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Asymmetric Synthesis of All-Carbon Spirocycles by a 
Stetter/Aldol Cascade

Significance: Pan, Chi, and co-workers report an 
asymmetric carbene- and thiourea-cocatalyzed de-
symmetrizing cascade reaction to form all-carbon 
spirocycles in a single step. The process initiates 
with an intermolecular Stetter reaction catalyzed by 
an NHC catalyst, followed by an intramolecular al-
dol reaction; the latter of which is suggested to be 
promoted by the substrate’s hydrogen-bonding 
network with the thiourea cocatalyst. The authors 
demonstrate the utility of the resulting enantio-
enriched spirocycles by further functionalizing the 
products to give polycyclic molecules as well as 
chiral phosphite ligands.

Comment: Biaryl-based chiral ligands and organo-
catalysts have long dominated asymmetric meth-
ods that utilize axially chiral scaffolds. However, a 
unique feature of spirocycles in relation to biaryl 
systems is that they are configurational more sta-
ble and therefore theoretically, at least, more prac-
tical (see: V. B. Birman, A. L. Rheingold, K.-C. Lam 
Tetrahedron: Asymmetry 1999, 10, 125). Therefore, 
the limited use of spirocycles in asymmetric cataly-
sis has likely not been a consequence of their lack of 
efficiency, but rather the insufficient practicality 
and modularity of their synthesis. While many ap-
proaches depend on a chiral resolution of the corre-
sponding racemate, the authors herein report a 
novel and straightforward approach to the synthe-
sis of enantioenriched spirocyclic molecules, includ-
ing those bearing up to two spirocyclic centers.
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