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ABSTRACT: Ferrocene-derived dicarbaldehydes bearing pro-chiral planes are desymmetrized under the catalysis of chiral N-
heterocyclic carbene organic catalysts. The reaction features selective activation and reaction of one of the aldehyde moieties of the
ferrocene derivative while leaving the other aldehyde unit untouched. Our reaction affords enantiomerically enriched planar chiral
ferrocene products obtained that are amenable for further transformations. Preliminary application studies show encouraging results
when our products are explored for catalysis in chemical synthesis and for antimicrobial utilities in pesticide development.
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Ferrocene and its derivatives bear sandwich structures1 and
can create planar chirality once two or more different

functional groups are introduced onto one of their cyclo-
pentadienyl rings. To date, planar chiral ferrocene derivatives
have been explored in both synthetic chemistry2 and medicinal
research3 (Figure 1a). For instance, the (R,Sp)-Xyliphos has
been used as the ligand in the production of the chiral
herbicide (S)-metolachlor.4 Ferroquine bearing a stereogenic
plane is an antimalarial reagent and has been advanced in the
Phase II clinical trials for the treatment of malaria in a
combination therapy.5 Ferrocene-based polymers are also
attractive because of their switchable polarity, modified electric
potentials, electrochromic properties, and good thermal
stabilities.6 Therefore, the development of efficient and
stereoselective methods for access to planar chiral ferrocene
derivatives continues to attract much interest.
Planar chiral ferrocenes can nowadays be achieved via

transition-metal-catalyzed cross-coupling reactions7 (Figure 1b,
left side). With the assistance of a central-chiral directing group
(DG) installed on the ferrocene structure, an external
functional group (FG) can be effectively introduced via a
diastereoselective directed ortho-metalation (DoM) process.8

An enantioselective DoM can also be achieved with the
assistance of a nonchiral DG using a transition metal/chiral
ligand catalytic system.9 Chiral resolution strategies are also
widely used for the enantioselective syntheses of vairous planar
chiral ferrocene derivatives.10 Only limited examples have been

reported on the preparation of optically enriched ferrocene
molecules through desymmetrization reactions11 (Figure 1b,
right side). For instance, Ogasawara, Takahashi, and co-
workers have reported in 2010 an asymmetric interannular
metathesis reaction for the enantioselective preparation of
planar-chiral phosphaferrocene derivatives via a Molybdenum-
promoted desymmetrization process.11a They also applied this
method in the asymmetric intraannular ring-closing metathesis
reaction in the desymmetrization of 1,2,3-triallylic ferrocene
derivatives.11b Stephenson and co-workers have used the
“click” reaction in the desymmetrization of 1,3-bisalkynyl
ferrocenes with the assisstance of the CuCl/(R,R)-Ph-Pybox
catalytic system.11c To the best of our knowledge, the use of
mild and organocatalytic approaches for ferrocene desymmet-
rization reactions has remained underdeveloped.
Herein, we report an organocatalytic approach for

asymmetric synthesis of ferrocene-based planar chiral multi-
functional molecules (Figure 1c). N-Heterocyclic carbene
(NHC)12 is used as the sole organic catalyst for the
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enantioselective desymmetrization of the pro-chiral ferrocene
dicarbaldehyde 1a. After addition of the chiral NHC catalyst,
two diastereoisomeric Breslow intermediates I and II are
formed in reversible fashion. The intermediate II is much more
easily formed than intermediate I because of steric reasons and
can be oxidized under mild conditions to give the chiral
acylazolium intermediate III. 2-Nitrophenol 2a is used as the
esterification reagent to react with intermediate III to give the
final planar chiral ester product 3a with regeneration of the free
NHC catalyst.
As a special note, the optically enriched planar chiral

products from our reaction (such as 3a) bear multiple
functionalities and can be transformed to a diverse set of
chiral molecules bearing stereogenic planes. These planar
chiral molecules can be used as catalysts for various
asymmetric reactions. They also provide new scaffolds as
antimicrobial agents for the development of agrochemicals in
plant protections.
It is also worth noting that although NHCs have been

extensively used as effective catalysts for enantioselective
acylation reactions,13 NHC organocatalytic reactions have not
been used in the synthesis of planar chiral molecules in any
form. We hope our present study to stimulate further

investigations into planar chiral molecule synthesis via
organocatalytic approaches.
We started to search for a suitable reaction condition for the

enantioselective desymmetrization of the ferrocene dicarbalde-
hyde 1a with the 2-nitrophenol 2a using different NHC
organic catalysts in the presence of the DQ oxidant14 (Table 1,

entries 1 to 4). The NHC precatalyst A15 bearing an electron-
rich N-Mes group was not effective for this process (entry 1),
while the NHC precatalysts bearing electron-neutral or
electron-poor N-aryl substituents could give the desired planar
chiral monoesterificated product 3a in moderate yields16

(entries 2 to 4). Rovis, Bode, Berkessel, and others have
demonstrated that the electron-withdrawing N-substituents on
the NHC catalysts are beneficial to aldehyde esterification
reactions under oxidative conditions,17 since the NHC
catalysts with low basicity can form the Breslow intermediates
in reversible fashion and are easily oxidized to form the
acylazolium intermediates for esterification reactions. To our
delight, the NHC precatalyst D bearing an N-2,4,6-
trichlorophenyl group gave the target product 3a in a
promising 93:7 er value (entry 4). We therefore used the
NHC precatalyst D for the examination of different bases in
this protocol (entries 5 to 7). Switching the basic additive from
Cs2CO3 into PhCO2Na resulted in a dramatic improvement in
both the reaction yield and the enantioselectivity (entry 5).

Figure 1. Planar chiral ferrocenes and their syntheses.

Table 1. Condition Optimizationa

entry NHC base solvent yield (%)b er (%)c

1 A Cs2CO3 THF 0
2 B Cs2CO3 THF 47 58:42
3 C Cs2CO3 THF 79 73:27
4 D Cs2CO3 THF 58 93:7
5 D PhCOONa THF 79 95:5
6 D Et3N THF 75 90:10
7 D DBU THF 70 85:15
8 D PhCOONa CH2Cl2 74 78:22
9 D PhCOONa toluene 61 85:15
10 D PhCOONa CH3CN 76 64:36
11d D PhCOONa THF 81 96:4
12e D PhCOONa THF 79 96:4
13d,f D PhCOONa THF 60 96:4
14d,g D PhCOONa THF 25 96:4

aUnless otherwise specified, the reactions were carried using 1a (0.20
mmol), 2a (0.10 mmol), DQ (0.10 mmol), NHC (0.02 mmol), base
(0.02 mmol), solvent (1.0 mL) at 30 °C for 24 h. bIsolated yield of
3a. cThe er values were determined via HPLC on chiral stationary
phase. d6.0 mL of THF was used as the solvent at −20 °C for 48 h.
eThe reaction was carried at 10.0 mmol based on 1a. f1a (0.15 mmol)
was used. g1a (0.10 mmol) was used.
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The use of organic bases led to drops of the reaction outcome
(entries 6 to 7). The reaction also turned out to be sensitive to
the solvent we used (entries 8 to 10). Both nonpolar (entries 8
to 9) and highly polar (entry 10) organic solvents other than
THF we used gave the target product 3a in much decreased
optical purities, although the yields of 3a were still moderate.
Finally, the er value of the planar chiral monoester 3a could be
further increased to 96:4 when carrying out the reaction in a
diluted system at −20 °C, with the yield of 3a also improved to
81% after an extended reaction period (entry 11). It is pleasing
to find that the reaction can also be carried out at large scale
without obvious erosion on either the product yield or optical
purity (entry 12). Noteworthily, reducing the amount of the
dialdehyde substrate 1a resulted in an obvious drop in the yield
of 3a, with the nonchiral diester byproduct afforded in 10% to
30% yields in these cases (entries 13 to 14). In contrast to our
previous studies with o-phthaladehyde substrates,18 no
formation of the lactol acylation products was observed. This
is probably because the formation of the monoesterificated
product 3a is both kinetically and thermodynamically favored.
With an optimal reaction condition at hand (Table 1, entry

11), we then examined the substrate scope of this
enantioselective desymmetrization reaction using ferrocene-
based dicarbaldehydes 1 bearing different substitution patterns
(Scheme 1). Various alkyl groups are well tolerated on the 1′-

position of the ferrocene moieties of the substrates 1, with the
planar chiral monoesterificated products afforded in moderate
to good yields and excellent enantioselectivities (3b to 3e).
The 1′-alkyl group can also be switched to a trans-styryl group,
and the planar chiral product 3f was given in a moderate yield
with excellent enantioselectivity. Noteworthily, a methyl group
can be introduced onto the 4-position of the ferrocene
structure, with the optically pure monoesterified product 3g
afforded in a good yield.
Having examined the substrate scope of the ferrocene

dicarbaldehydes 1, we then studied the effects of the
substitution patterns on the phenol substrates 2 (Scheme 2).
Both electron-donating and electron-withdrawing substituents

can be introduced onto the 3- and 4-positions of the 2-
nitrophenol moiety, with the target planar chiral ferrocene
products afforded in moderate to excellent yields and good to
excellent enantioselectivities (3h to 3n). Substitutions on the
5-position of the 2-nitrophenol substrate resulted in no
reaction under the current catalytic condition. This is probably
due to the fairly increased steric hindrance caused by the two
adjacent substituents to the phenol OH group.
Gratifyingly, the 2-nitro group on the phenol moieties of the

products can also be switched into various electron-with-
drawing groups to give the corresponding planar chiral
monoester products in good yields and optical purities (3o
to 3s). Both of the 4-nitrophenol and the pentafluorophenol
can be used as effective esterification reactants for this NHC-
catalyzed desymmetrization process, with the desired mono-
esterificated aldehyde products afforded in good to excellent
yields and enantioselectivities (3t and 3u). However, the
introduction of a three-electron-withdrawing Br group on the
phenol substrate resulted in significant drops of the product
yield and er value (3v). It is worthwhile to note that no
reaction occurred when using electron-rich phenols as the

Scheme 1. Scope of Ferrocene Dicarbaldehydes 1a

aReaction conditions as stated in Table 1, entry 11. Yields are isolated
yields after purification by column chromatography. Er values were
determined via HPLC on chiral stationary phase.

Scheme 2. Scope of the Phenols 2a

aReaction conditions as stated in Table 1, entry 11. Yields are isolated
yields after purification by column chromatography. Er values were
determined via HPLC on chiral stationary phase.
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esterification reagents in this process under the current
optimized reaction condition. This is probably because the
pKa values of the phenol molecules bearing electron-donating
substituents are very high and the deprotonation processes of
the electron-rich phenols are difficult even with stronger bases
(e.g., DBU, NaOH, LHMDS) under the otherwise identical
conditions.
To our great delight, thiols 4 also worked well as the

esterification reagent for the face-selective desymmetrizations
of the ferrocene dicarbaldehydes 1 (Scheme 3). Thioesters 5

bearing both electron-donating and electron-withdrawing
groups at the 2- and 4-positions of the aromatic thiol moieties
were afforded in moderate to good yields and optical purities
(5a to 5e). Benzyl mercaptan could also be used as the
nucleophile in this reaction, although the product yield and er
value were not satisfactory under the current reaction
condition (5f). The ferrocene dicarbaldehyde 1 bearing
different alkyl substituents could give the corresponding planar
chiral 2-bromophenylthioesters in moderate yields with good
to excellent enantioselectivities (5g to 5i).
The optically enriched planar chiral multifunctional products

obtained from this approach are amenable in various
transformations via simple protocols (Figure 2). For example,
the 2-nitrophenol ester moiety of 3a can be hydrolyzed under
basic conditions to give the bifunctional planar chiral ferrocene
6 containing both an aldehyde and a carboxylic acid group.
The carboxylic acid group of 6 can react with phenylamine and
afford the planar chiral amide 7 with retention of the optical
purity. Both of the aldehyde groups on 3a and 6 can be
protected by alcohols or thiols via simple protocols, with the
target products of the acetal 8 and the dithioacetals 9 to 12
(which can be esterificated to give 13 to 16 in excellent yields)

afforded in moderate to good yields without obvious erosions
on the optical purities.
Although carbaldehydes19 and carboxylic acids20 bearing

stereogenic centers and axes have been extensively studied in
various aspects, the application of planar chiral carbaldehydes
and acids in either organic synthesis or biological research has
been rarely reported. This is probably due to the lack of
efficient method for asymmetric preparation of such functional
molecules bearing stereogenic planes.
Having obtained a diversity of planar chiral ferrocene-

derived aldehydes and carboxylic acids, we were able to apply
these functional molecules as catalysts/ligands in asymmetric
catalytic reactions (Figure 3). For example, the monoester-
ificated ferrocene carbaldehyde 3b can catalyze the SN1
substitution reaction between the amine 17 and the indole
phenyl methanol 18 in the presence of a catalytic amount of
the acid DNBA, with the chiral indole derivative 19 afforded in
a moderate yield and enantioselectivity (eq 1).21 The
bifunctional ferrocene 7 bearing both a carbaldehyde and a
carboxylic acid group can promote the cycloaddition reaction
of the α, β-unsaturated ester 20 and the α-amino acid ester 21
in enantioselective fashion (eq 2).22 Both of the trans- and cis-
γ-lactam isomers of the product 22 can be afforded with good
er values. Additionally, the planar chiral carboxylic acid 12 can
be used as the chiral ligand for the Co-catatyzed
enantioselective C(sp3)-H amination reaction between thio-
amide 23 and the dioxazolone 24, although the optical purity
of the product 25 was only moderate at the current stage (eq
3).23

The planar chiral ferrocene derivatives obtained from our
approach also exhibit interesting bioactivitites in our research
on novel pesticide development for plant protections (Table
2). For example, many of our optically enriched ferocene-
derived multifunctional molecules show excellent antibacterial
activities against Xanthomonas axonopodis pv. citri (Xac)24 that
can cause citrus canker and result in huge economic loss in the
production of lemons, oranges, and grapefruits. Compared
with the thiodiazole copper (TC) that has been widely used as

Scheme 3. Reactions between Ferrocene Dicarbaldehydes 1
and Thiols 4a

aReaction conditions as stated in Table 1, entry 11. Yields are isolated
yields after purification by column chromatography. Er values were
determined via HPLC on chiral stationary phase

Figure 2. Synthetic derivatizations of the planar chiral ferrocene 3a.
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a commercially available antibacterial agrichemical, 14 of the
chiral prodcuts afforded from our method have shown
obviously superior antibacterial activities and can be regarded
as promising candidates in the search for new pesticide
structures.
In summary, we have disclosed an NHC-catalyzed

enantioselective desymmetrization reaction for the synthesis
of optically enriched planar chiral ferrocenes. It represents an
alternative strategy for the preparation of planar chiral
functional molecules under mild and transition-metal-free
conditions. The pro-chiral planes existing in the ferrocene
dicarbaldehyde substrate can be efficiently discriminated by a

single chiral NHC organic catalyst, with one of the two
carbaldehyde groups oxidized and esterificated in enantiose-
lective fashion. Both of the ferrocene dicarbaldehyde and the
nucleophilic esterification reactants can tolerate a diversity of
substitutents, with the planar chiral monoesterificated products
afforded in moderate to excellent yields and optical purities.
The multifunctional planar chiral ferrocene derivatives
obtained from this approach have shown broad applications
in both synthetic and biological research. Further inves-
tigations into the synthesis of planar chiral functional
molecules via simple and metal-free organocatalytic reactions
and their applications in novel pesticide development are in
progress in our laboratories.
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Figure 3. Asymmetric catalytic reactions promoted by the planar
chiral ferrocene product derivatives.

Table 2. In Vitro Inhibitive Activities of the Planar Chiral
Compounds against Xanthomonas axonopodis pv. citri
(Xac)a

Xac inhibition rate (%)

compounds 100 μg/mL 50 μg/mL

3b 65.75 ± 4.80 61.08 ± 3.32
3j 73.87 ± 1.66 68.28 ± 2.39
3k 68.66 ± 2.16 41.67 ± 0.64
3l 84.19 ± 0.75 71.29 ± 2.21
3m 69.25 ± 0.46 25.91 ± 4.25
3n 72.04 ± 0.49 58.17 ± 2.63
3s 85.86 ± 0.65 74.35 ± 3.22
3v 66.88 ± 5.83 58.49 ± 2.60
5b 76.94 ± 4.48 61.40 ± 4.61
5d 68.44 ± 2.54 59.09 ± 0.83
5e 73.39 ± 1.25 56.56 ± 5.23
5g 65.59 ± 4.52 64.30 ± 2.85
5h 66.34 ± 6.30 64.41 ± 2.70
8 76.24 ± 1.04 87.90 ± 2.45

TCb 46.08 ± 3.91 33.17 ± 4.01
aAll data were average data of three replicates. bTC = thiodiazole
copper.
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