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ABSTRACT: A carbene-catalyzed sulfonylation reaction between
enone aryl aldehydes and sulfonyl chlorides is disclosed. The
reaction effectively installs sulfone moieties in a highly
enantioselective manner to afford sulfone-containing bicyclic
lactones. The sulfonyl chloride behaves both as an oxidant and a
nucleophilic substrate (via its reduced form) in this N-heterocyclic
carbene (NHC)-catalyzed process. The NHC catalyst provides
both activation and stereoselectivity control on a very remote site
of enone aryl aldehyde substrates. Water plays an important role in
modulating catalyst deactivation and reactivation routes that
involve reactions between NHC and sulfonyl chloride. Exper-
imental studies and DFT calculations suggest that an unprece-
dented intermediate and a new oxidation mode of the NHC-
derived Breslow intermediate are involved in the new asymmetric sulfonylation reaction.

■ INTRODUCTION

Chiral sulfones are unique moieties in medicines and natural
products with important applications (Figure 1a).1 For
example, aryl sulfone-containing MK-0752 is a potent γ-
secretase inhibitor for the treatment of breast cancer.2

Danirixin is a reversible and selective CXCR2 antagonist
with inhibitory effects on CXCL8 for the treatment of breast
cancer.3 Natural product (−)-agelasidine A bearing an allylic
sulfone molecule was isolated from sea sponge Agelas sp. and
exhibited antispasmodic activity.4 The sulfone units are also
found in bicyclic lactam drugs such as tazobactam5 and
sulbactam.6 Given the proven significance, enantioselective
installation of sulfone groups to various molecules receives
considerable attention.7 Both transition-metal catalyst-8 and
organic catalyst9-mediated synthetic strategies have been
developed. Representative methods include asymmetric
substitution,10 asymmetric hydrothiolation−oxidation,11 asym-
metric hydrogenation,12 and enantioselective hydrosulfonyla-
tion.13

Here, we disclose a new approach for catalytic asymmetric
installation of alkyl and aryl sulfone moieties for access to
optically enriched allylic sulfones bearing bicyclic enol lactones
(Figure 1b). Under the catalysis of N-heterocyclic carbenes,14

an enone aryl aldehyde15 and a sulfonyl chloride react with
each other through a redox and several nucleophilic addition
processes to furnish the product with excellent yields and
enantiomeric purities. In our strategy, the reactivity and
stereoselectivity of the enone β-carbon are controlled via the

N-heterocyclic carbene (NHC) catalyst that is added to an
aldehyde moiety five atoms away from the aldehyde. The
sulfonyl chloride plays two main roles: one as an oxidant and
the other one as the sulfonylation substrate. This oxidation of
Breslow intermediate I by sulfonyl chloride is an electron-pair-
transfer process and features a previously unknown mecha-
nistic pathway in NHC organic catalysis. Specifically, the
hydroxyl unit of Breslow intermediate I reacts with sulfonyl
chloride to form an unprecedented intermediate II. An
intramolecular redox process of II generates an acyl azolium
intermediate III with the concurrent release of a sulfinate
anion. Enantioselective addition of the sulfinate anion to the β-
carbon of the enone moiety of III followed by an enol lactone
formation affords the final sulfonylation product with the
regeneration of the NHC catalyst. A broad range of aryl and
alkyl sulfonyl chlorides can behave as effective sulfonylation
substrates to give the corresponding products in gram scales
with excellent yields and enantioselectivities. Our new mode of
NHC-mediated oxidation and intermediate offers rich
opportunities for further reaction development and applica-
tions.
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■ RESULTS AND DISCUSSION

Reaction Development. We started by using enone aryl
aldehyde 1a and toluenesulfonyl chloride 2a as model
substrates to search for suitable conditions, with the key
results summarized in Table 1. A typical condition involved the
use of 0.10 mmol 1a, 0.12 mmol of 2a, 0.02 mmol of the NHC
precatalyst, a base, and 2 mL of the solvent for the reaction to
proceed at 45 °C for 12 h. To our delight, with the use of
aminoindanol-derived triazolium A16 as the NHC precatalyst,
the desired product 3a could be obtained with excellent
enantioselectivity [96% enantiomeric excess (ee)] and a low
but encouraging 13% yield (Table 1, entry 1).When 4 Å
molecular sieves (MSs) (50 mg) were added to the reaction
mixture, a sharp drop in the reaction yield was observed (from
13% to less than 5% yield, entries 1 and 2). When water (0.05
mmol) was added, the reaction gave a much improved 44%
yield without much erosion on the product optical purity
(entry 3). These results suggested that water played an
important role in either promoting the desired reaction
pathways or modulating some of the catalyst deactivation
processes (see Figure 4b and the Supporting Information). We
next performed the reactions in the presence of a small amount
of water. After evaluating the NHC precatalysts B17 and C18

(Table 1, entries 4 and 5), using the triazolium precatalyst C

gave product 3a in 50% yield and 98% ee value (Table 1, entry
5). Several organic and inorganic bases were tested here, and
we found that the yield was slightly improved using Cs2CO3,
and 3a was obtained in 52% yield and 97% ee (Table 1, entries
6 to 8). Solvents also had a clear impact on the reaction
outcomes: toluene performed the best to give 3a with 75%
yield and 98% ee (Table 1, entries 9 to 11). The product yield
was further improved to 90% when the amount of
toluenesulfonyl chloride 2a was increased from 0.12 mmol to
0.15 mmol, with no loss of enantioselectivity of the product
(Table1, entry 12). It is worth noting that the reaction time
could be decreased to 4 h without affecting both the product
yield and ee value (Table1, entry 13). Based on entry 13, we
performed additional studies on the effects of bases. It was
found that weak bases performed better than strong bases. This
is likely because that the use of strong bases disfavors the
formation of the Breslow intermediate (proton transfer from
the conjugated acid of a strong base such as tBuOK is
unfavorable). Carbonates (such as K2CO3 and Cs2CO3) are
optimal bases due to the readily formation of H-bonding
networks that facilitate proton transfer. A detailed analysis on
the role of bases is provided in the Supporting Information.

Reaction Scope. With an optimal reaction condition in
hand, we explored the reaction scope of both enone aryl

Figure 1. Functional molecules containing chiral sulfones and the new mode of Breslow intermediate oxidation.
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aldehydes 1 and toluenesulfonyl chloride 2a. Different
substitution patterns of enone aryl aldehydes were examined
(Table 2). Substituents with both electron-withdrawing groups
(3b−3f and 3i−3k) and electron-donating groups (3g−3h and
3l) could be installed on the para- and meta-positions of the β-
phenyl group of enone aryl aldehydes, with the corresponding
desired products afforded in excellent yields and enantiose-
lectivities. However, the yield of the desired product was
decreased when a fluorine unit was introduced to the ortho-
position of the β-phenyl group of the enone aryl aldehyde
(3m). The β-phenyl group of the enone aryl aldehyde 1a could
be replaced with a naphthalene group, and the product could
be obtained in excellent yield and enantioselectivity (3n). It is
worth noting that the β-phenyl group could be replaced with
isopropyl and methyl groups, and excellent yields were also
obtained (3o−3p). Changing the methyl group of the enone
aryl aldehyde to the ethyl group did not affect the
corresponding product enantioselectivity (3q). The installation
of either electron-withdrawing Cl/F or electron-donating
methyl groups at the 4- or 5-position on the aromatic ring of
enone aryl aldehydes did not affect the excellent yields and
enantioselectivities (3r−3v). Taken together, these substrate
scope screenings demonstrated that the electronic influences

on the aryl groups of the substrates are highly amenable to
modification and tuning, without suffering from the loss of
yield or enantioselectivity.
The generality of different types of sulfonyl chlorides 2 was

also examined (Table 2). Placing different substituents on the
para- and meta-positions of sulfonyl chlorides resulted in
excellent enantioselectivities (4a−4j). The naphthalene group
of sulfonyl chloride could get the corresponding product with
excellent enantioselectivity (4k). Under the current conditions,
using heterocycle or alkane instead of phenyl groups led to
decreased yields, with retention of excellent enantioselectivities
(4l−4q).

Synthetic Applications. The sulfone-containing enol
lactone product from our reactions could undergo further
transformations using straightforward conditions. For example,
the enol carbon−carbon double bond of 3a could undergo
dichlorination in a highly stereoselective manner to give 5 as
essentially a single diastereomer with 97% ee.19 This product 5
could react with ethanol to open its lactone ring with a
subsequent elimination of the chloride anion to give
chlorinated ketone adduct 6 as a single diastereomer with
97% ee. This carbon−carbon double bond of 3a could also be
epoxidized with m-CPBA to form epoxide product 7 as a single
diastereomer without reduction of the optical purity20 (Table
3).

Mechanistic Study. To understand the mechanism of our
new catalytic reaction, density functional theory (DFT)
calculations and multiple experiments were performed (Figures
2 and 3).
The DFT studies suggest that the reaction starts with

stereoselective addition of the NHC catalyst to the aldehyde
group of 1a, followed by the formation of the Breslow
intermediate I (Figure 2a). The addition of NHC to the (Re)-
face of the aldehyde (Re-TS1) has a barrier that is 4.4 kcal
mol−1 lower than that to the (Si)-face (Si-TS1). This barrier
difference kinetically favors the (Re)-face addition by ∼1500
times at the reaction temperature using simple transition state
theory (TST) (Supporting Information Section S4.1). We note
that this (Re)-face selectivity for the addition of NHC to
aldehyde is different from the (Si)-face selectivity for a similar
reaction previously reported,21 potentially due to the different
interactions between the side groups of the substrate and the
different NHC molecules used. The NHC-adduct S-INT2 can
be converted to the Breslow intermediate I under a protonated
base assistance, in accordance with previous reports.21

Concerted 1,2-proton transfer via a seven-membered cyclic
transition structure S-TS2 has the lowest barrier (22.4 kcal
mol−1) compared to other modes of Breslow intermediate
formation (Supporting Information Section S4.2). The
mechanistic alternative for the direct tosylation at the oxyanion
of S-INT2 (via S-TS2a, at 24.5 kcal mol−1, Figure 2a) was
computationally considered but was found to be much less
kinetically favorable, by a factor of about 1:33, than S-TS2
(Supporting Information Section S4.3).
Although thermodynamically uphill as compared to the

reactants, the Breslow intermediate I can undergo a base-
assisted, barrierless deprotonation (Supporting Information
Section S4.4) to give enolate I-a, which further undergoes O-
tosylation via TS3 (barrier of 22.3 kcal mol−1) to give tosylated
species II (Figure 2b). This process is highly thermodynami-
cally favorable and irreversible as the forward reaction has a
much lower barrier than the reverse reaction.

Table 1. Optimization of the Reaction Conditionsa

aUnless otherwise specified, the reactions were carried using 1a (0.10
mmol), 2a (0.12 mmol), base (0.12 mmol), pre-NHC (0.02 mmol),
H2O (0.05 mmol), and the solvent (2 mL) at 45 °C for 12 h.
bIsolated yield of 3a. cThe ee values were determined via HPLC on
the chiral stationary phase. d50 mg of 4 Å MSs. eNo additive. f0.15
mmol 2a was used. gReaction time was 4 h, nr = no reaction.
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From the tosylated species II, the tosyl anion Ts− can be
generated via TS4 with a barrier of 22.7 kcal mol−1 (Figure
2c). This gave the acyl azolim intermediate III, to which the

nascently generated Ts− can be added in a stereoselective
manner. We found that the addition of Ts− to the (Re)-face of
the β-carbon of the enone aryl aldehyde substrate (Re-TS5,
ΔG⧧ = 12.6 kcal mol−1) has a lower barrier than that to the
(Si)-face (Si-TS5, ΔG⧧ = 14.3 kcal mol−1). This ΔΔG⧧ of 1.7
kcal mol−1 favors the observed enantioselectivity by 17:1 and
translates to an ee value of about 89%, in good agreement with
the experimental observations. We found that Re-TS5 has a
lower activation barrier due to the favorable noncovalent
interactions (NCIs) between the C−H bonds on the aryl ring
of the NHC and the O-atoms of Ts− anion, which stabilize the
transition state (TS). These CH−O NCIs are absent in Si-TS5
(Figures 2d and S13).
We note that the energies for the key TSs (S-TS2, TS3, and

TS4) are all very close to each other (within 0.3 kcal mol−1),
suggesting that any one of these steps may be possible as the
rate-limiting step. Nevertheless, all these barriers (22.3−22.7
kcal mol−1) are consistent with ambient temperature reactivity.
We additionally ruled out the alternative mechanism for the

generation of acyl azolium intermediate III from the Breslow

Table 2. Scope of Enone Aryl Aldehyde 1a and Toluenesulfonyl Chloride 2aa

aReaction conditions as stated in Table 1, entry 13. Yields are isolated yields after purification by column chromatography. The ee values were
determined via HPLC on the chiral stationary phase. bThe reaction was carried out at 4.0 mmol scale based on 1a.

Table 3. Synthetic Transformation of 3a
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intermediate I via direct hydride transfer to toluenesulfonyl
chloride (Figure 3). These TSs (Figure S20) have much higher
barriers (>45 kcal mol−1) that are thermally challenging to
overcome under the reaction conditions used.
Additional mechanistic possibilities involving single-electron

redox processes/radical intermediates were computationally
investigated (Supporting Information Section S3). These are
ruled out based on much less favorable activation barriers and
unfavorable redox potentials.
Based on the combined experimental and computational

mechanistic studies, we propose that the current trans-
formation proceeds via the catalytic cycle shown in Figure
4a. To understand the role of water on the mechanistic
outcome, several control experiments were carried out (Figure
4b). When using 4 Å MSs as the additive and anhydrous
toluene as the solvent, it was found that NHC directly reacted
with toluenesulfonyl chloride 2a to form adduct 8. This adduct

8 was determined via liquid chromatography−high resolution
mass spectroscopy (LC-HRMS). Under this anhydrous
condition, product 3a was nearly unobservable, suggesting a
strong deactivation of the NHC catalyst. When a small amount
water was added (as the condition in Table 1, entry 13), only a
trace amount of adduct 8 was detected by LC-HRMS. Our
current attempts in detecting the exact intensity of adduct 8 in
the reaction mixture were not successful because this adduct
was short-lived and highly reactive. A semiquantitative analysis
was performed, and the intensity of adduct 8 in the absence of
water was found to be 30−130 times higher than that in the
presence of water (Figure 4b, see the Supporting Information
for more details). These observations suggested that water
plays an important role in releasing the NHC catalyst from
adduct 8, thus recovering the deactivated NHC-TS complex to
regenerate the NHC for a productive catalytic cycle. We also
found that without NHC activation of the substrate 1a,

Figure 2. Gibbs energy profile for the full reaction (a−c) and the DFT-optimized structures for the stereodetermining transition states (d). Gibbs
energies are computed at the SMD (toluene)-M06-2X/def2-TZVP//M06-2X/def2-SVP level of theory and are quoted in kcal mol−1.
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addition of the sulfonate anion to the enone moiety of 1a did
not occur (Figure 4c). These results (Figure 4c) suggested that
both the reactivity and stereoselectivity of the enone β-carbon
are controlled via the NHC catalyst that adds to an aldehyde
moiety at a very remote site.

■ CONCLUSIONS
In summary, we have developed an NHC-catalyzed enantio-
selective strategy for the sulfonylation of enone aryl aldehydes
by sulfonyl chlorides. The sulfonyl chloride behaves as an
oxidant, and its reduced form (the resulting sulfinate anion)
functions as a nucleophilic substrate to provide the sulfone
moiety. The overall reaction is a redox-neutral process
(without the need for external oxidants) that features a new

intermediate and a new mode of oxidation under NHC
catalysis. Through addition to the aryl aldehyde carbon that is
very remote from the substrate reaction site, the NHC catalyst
provides both reaction activations and stereoselectivity
controls. Both experiments and DFT calculations were
performed to elucidate the mechanistic pathway of our
reactions. Water was found to play an important role in
modulating the activation/deactivation routes of the NHC
catalyst. Inspired by these findings, the ongoing studies in our
laboratories include the development of new NHC-bound
intermediates and their reactions and construction of chiral
sulfone-containing bioactive molecules for applications in
medicines and agrochemicals.

Figure 3. Alternative mechanism for the generation of acyl azolium intermediate III from Breslow intermediate I via direct hydride transfer to
toluenesulfonyl chloride.

Figure 4. Proposed catalytic cycle and additional supporting mechanistic experiments.
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