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Benzene construction via organocatalytic formal
[3þ 3] cycloaddition reaction
Tingshun Zhu1, Pengcheng Zheng1,2, Chengli Mou1,2, Song Yang2, Bao-An Song2 & Yonggui Robin Chi1,2

The benzene unit, in its substituted forms, is a most common scaffold in natural products,

bioactive molecules and polymer materials. Nearly 80% of the 200 best selling small

molecule drugs contain at least one benzene moiety. Not surprisingly, the synthesis of

substituted benzenes receives constant attentions. At present, the dominant methods use

pre-existing benzene framework to install substituents by using conventional functional group

manipulations or transition metal-catalyzed carbon-hydrogen bond activations. These

otherwise impressive approaches require multiple synthetic steps and are ineffective from

both economic and environmental perspectives. Here we report an efficient method for the

synthesis of substituted benzene molecules. Instead of relying on pre-existing aromatic rings,

here we construct the benzene core through a carbene-catalyzed formal [3þ 3] reaction.

Given the simplicity and high efficiency, we expect this strategy to be of wide use especially

for large scale preparation of biomedicals and functional materials.
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M
ulti-substituted benzenes are widely present in natural
products. In industry, these benzene frameworks are
nearly unavoidable in preparing most of today’s

biomedicals, fine chemicals and polymer materials. The functions
of the benzene-containing molecules are determined by the
identity and substitution patterns of the substituents installed on
the benzene unit. Exemplified in Fig. 1a are one natural product
(salvadorin)1 and two synthetic bioactive molecules2,3 containing
a benzene core bearing four substituents. Most synthetic methods
in synthesizing such multi-substituted aromatics start with pre-
existing benzene unit by replacing hydrogen with other functional
groups. The classic approach relies on stepwise electrophilic
substitution (such as Friedel–Crafts reaction) or electrophilic
halogenation and successive transition metal-catalyzed couplings.
However, regio-selectivity and chemo-selectivity normally require
rather tedious functional group (including protecting group)
manipulations. For example, the classic synthesis of a 2,4,6-
trisubstituted benzoate needs the introduction of a temporary
amine group to ensure selectivities in a key bromination reaction
step4, and the overall synthesis requires over eight steps (Fig. 1b).
Another approach for access to substituted benzenes is based on
transition metal-catalyzed direct C–H activations5–8. While
providing impressive shortcuts for benzene substitutions, this
C–H activation method has its own limitations. For example, the
presence of directing groups (for coordination with the metal
catalyst) is often necessary and the instruction of multiple
substituents is difficult (in part due to steric congestion). In a

different direction for substituted benzene synthesis, the benzene
core is newly formed. Representative methods include transition
metal-catalyzed [2þ 2þ 2] or [4þ 2] reactions such as acetylene
trimerizations developed by Reppe et al.9–11 In this cycloaddition
approach, partial or complete intramolecular reaction is usually
indispensable to ensure the regio-selectivity.

Here we report a new strategy for highly effective access to
multi-substituted benzenes through the construction of the
benzene core via a formal [3þ 3] cycloaddition reaction
(Fig. 1d). Our approach uses enals readily prepared in three
steps and unsaturated ketones as the starting material and
N-heterocyclic carbene (NHC) as the organic catalyst12–24. It is a
single-step reaction that affords tetra-substituted benzenes (2,4,6-
trisubstituted benzoate and its analogues) with high yield. In
comparison, previous approaches to this class of molecules
typically need seven steps with less than 10% overall yields25

(Fig. 1d). A plausible pathway of our NHC-catalyzed [3þ 3]
cycloaddition reaction involving formal a-, and g-carbon
activations of enal is illustrated in Fig. 2. Briefly, addition of the
carbene catalyst to the aldehyde moiety of enal followed by
deprotonation forms Breslow intermediate I26–28. This process is
followed by oxidative transformation29–33, and former enal g-CH
deprotonation33 leads to vinyl enolate intermediate III. Notably,
similar vinyl enolate intermediate could also be accessed from
ketenes34 by Ye or esters in our laboratory35. Nucleophilic
Michael-type addition of the g-carbon of III to enone 2 affords
intermediate IV bearing a NHC-bound a,b-unsaturated ester
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Figure 1 | Multi-substituted benzenes and their synthesis. (a) examples of natural products and bioactive synthetic compounds containing

multi-substituted benzene. (b) it took about eight steps for the classical substitution methods to synthesize a 2,4,6-trisubstituted benzoate. (c) transition

metal-catalyzed C–H activation methods provides a shortcut (about five steps) for the synthesis. (d) this work: single key step reaction to afford

tetra-substituted benzenes via organocatalyzed formal [3þ 3] cycloaddtion.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6027

2 NATURE COMMUNICATIONS | 5:5027 | DOI: 10.1038/ncomms6027 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


moiety. Subsequent g-CH deprotonation of IV lead to dienolate
intermediate V that undergoes an intramolecular aldol to form a
cyclic intermediate VI. Intramolecular ester formation with the
release of NHC catalyst yields a bicyclic adduct VII containing a
four-membered b-lactone. Spontaneous decarboxylation36–39 and
oxidation40–42 of VII effectively affords benzene product bearing
four substituents in predictable substitution patterns.
Decarboxylation of b-lactone fused with a six-membered ring
similar to intermediate VII is a highly effective process, as
exemplified in Lupton’s [4þ 2] reaction via carbene catalysis39.

Results
Reaction optimization. We started by using enal 1a and enone
2a as the model substrates, in the presence of 2 equiv. quinone 4
as an oxidant29–33 and Cs2CO3 as a base. No formation of the
proposed benzene 3a was observed in the absence of an NHC
precatalyst (Table 1, entry 1). The N-methyl imidazolium NHC A
(ref. 43) and N-phenyl imidazolium B could not initiate the
reaction (Table 1, entries 2–3). We then found that with N-Mes
imidazolium C (ref. 44) as the NHC precatalyst, the proposed
product 3 was formed in 88% isolated yield (Table 1, entry 4).
Triazolium-based NHCs behaved similarly as the imidazolium
catalysts: triazolium D (ref. 45) (with a N-phenyl substituent)
could not catalyze the reaction; while the use of triazolium E
(ref. 46) with a N-mesityl substituent could lead the formation of
3 in 47% yield (Table 1, entries 5–6). Thiazolium-based NHCs F
(ref. 47) or G (ref. 48) could not initiate the reaction (Table 1,
entries 7–8). We then evaluated the effects of solvents and bases.
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Figure 2 | Postulated pathway. Addition of carbene catalyst to aldehyde followed by oxidative transformation and g-CH deprotonation leads to

intermediate III, which undergoes Michael addition to 2 and gives intermediate IV. Subsequent g-CH deprotonation of IV lead to V, after intramolecular

adol reaction, decarboxylation and oxidation, finally gives a benzene product bearing four substituents in predictable substitution patterns. Mes, 2,4,6-

trimethylphenyl. Cat., catalyst.

Table 1 | Condition optimization for NHC-catalyzed [3þ 3]
benzene construction.
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3 B (30) Trace
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NHC, N-heterocyclic carbene.
The reaction was carried out in 1.0 ml solvent under N2. Yields of 3a were isolated yields after
SiO2 chromatography purification. See Supplementary Table 1 for results under other conditions.
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Although the combination of tetrahydrofuran and Cs2CO3 was
optimal, other common organic solvents (such as CH2Cl2,
toluene, CH3CN and DMF) and organic/inorganic bases (such
as Et3N, DBU, tBuOK and K2CO3) could also be used (see the
Supplementary Table 1). Further investigation showed that the
catalyst loading of C could be decreased to 5 mol% with
acceptable 76% yield (Table 1, entry 9).

Scope of enal substrates. With an acceptable reaction condition
in hand (Table 1, entry 9), the scope of the reaction was eval-
uated. To demonstrate broader synthetic utility of this method,
we chose enone 2b bearing an alkene group (amenable for further
transformation) as a model enone substrate to study the

generality of the enal substrates (Fig. 3, products 3b–j). Both
electron-donating (products 3c–d, 3f) and electron-withdrawing
group (products 3e, 3g) at the p- position (products 3c–e) or
m- position (products 3f–g) of the b-phenyl group were well-
tolerated. Replacement of the b-phenyl substituent with a naph-
thyl (product 3h) or heteroaryl unit (products 3i–j) had little
effect on the reaction outcome. It is worth to note that E- or
Z-isomer of enal 1 gave essentially the same yields, so a mixture of
E-/Z-enals can be directly used.

Scope of enone substrates. With aldehydes 1a and 1b (Ar¼
4-OCH3-C6H4) as model nucleophile, the scope of enones was
also examined. As shown in Fig. 3 (products 3k–z1), in nearly all
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cases, the reaction proceeded smoothly at room temperature
to give polysubstituted benzenes in moderate to good yields.
Notably, the E-/Z-configuration of enone 2 did not affect the
reaction outcomes either (for example, see product 3k),
which greatly simplify substrate preparation process. Both
electron-rich (products 3p–q) or electron-deficient (products 3o
and 3r) aromatic groups, as well as vinyl groups (products 3k–m)
were all tolerated in the b-substituent (R2) of the enone
substrates. a-Substituent (R3) of the enone substrates can be
electron-deficient units such as acyl(3m, 3r, 3v–3w), ester (3k–l,
3n–q) or nitro (3y) groups. Substituent in the carbonyl group of
enones 2 (R4) can be a different alkyl group including methyl
(3k–q, 3r–s), ethyl (3t and 3w), isopropyl (3u) or trifluoromethyl
(3z–z1) group.

It is important to note that these polysubsituted benzene
molecules were difficult to prepare previously. For example,
previous method for the synthesis of benzoate 3o required seven
steps with less than 10% overall yields25; previous synthesis of 3p
and 3q needed a three-step reaction with 35 and 39% overall
yield49, respectively. Our method also provides effective access to
aromatic molecules with trifluoromethyl (CF3) substituent. In
organic synthesis, regioselective C–H trifluoromethylation50,51 or
methylation52–54 of aryl molecules still remains challenging
despite the rapid development in recent years.

Product transformation. We next demonstrated effective trans-
formation of our catalytic reaction products to bicyclic and
multicylic aromatic molecules that are found as a key scaffold in
natural products and functional synthetic molecules. For exam-
ple, the multisubsituted benzene adduct 3b could be transformed
to indene 7 (ref. 55) via reduction followed by Lewis acid-
mediated cyclization; 2,4,6-trisubstituted benzoate 3n can be
transformed to fluorenone 5 (refs 56,49) or isoindolone 6 (ref. 57)
via straightforward processes (Fig. 4).

Discussion
In summary, we have developed a NHC organocatalytic strategy
for the formal [3þ 3] construction of multi-substituted benzenes.
Our method directly employs commercially available or easily
accessible enals and enones to construct benzene framework with
excellent regioselectivities, offering useful insights into the design
of concise synthetic strategies for complex molecules. Further
studies regarding reaction mechanisms, synthetic applications
and axial chirality controls (for the formation of substituted
benzene products) are under progress in our laboratory.

Methods
Materials. For 1H, 13C and 19F NMR spectra of compounds in this manuscript,
see Supplementary Figs 1–32. For details of the synthetic procedures, see
Supplementary Methods.

Synthesis of 3. Under N2 atmosphere, a solution of enal (0.1 mmol), enone
(0.1 mmol), oxidant 4 (82 mg, 0.2 mmol), Cs2CO3 (48.7 mmg, 0.15 mmol) and
imidazolium C (1.7 mg, 0.005 mmol) in 1.0 ml tetrahydrofuran was stirred at
room temperature for 8 h. The mixture was concentrated under reduced pressure
and purified by silica gel column chromatography to afford the corresponding
product 3.

References
1. Mahmood, T., Ahmed, E. & Malik, A. Structure determination of salvadorin, a

novel dimeric dihydroisocoumarin from salvadora oleoides, by NMR
spectroscopy. Magn. Reson. Chem. 43, 670–672 (2005).

2. Stokker, G. E., Alberts, A. W., Gilfillan, J. L., Huff, J. W. & Smith, R. L.
3-hydroxy-3- methylglutaryl-coenzyme A reductase inhibitors. 5. 6-(Fluoren-9-
yl)-and 6(Fluoren-9-ylidenyl)-3, 5-dihydroxyhexanoic acids and their lactone
derivatives. J. Med. Chem. 29, 852–855 (1986).

3. Ortar, G. et al. 3-ylidenephthalides as a new class of transient receptor potential
channel TRPA1 and TRPM8 modulators. Bioorg. Med. Chem. Lett. 23,
5614–5618 (2013).

4. Robison, M. M. & Robison, B. L. 2,4,6-tribromobenzoic acid. Org. Synth. 36,
94–97 (1956).

5. Cossy, J. & Arseniyadis, S. Modern Tools for the Synthesis of Complex Bioactive.
Ch. 1, 1–32 (Wiley, 2012).
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