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The development of asymmetric conjugate addition reactions for
C—C bond formation remains an important challenge in organic syn-
thesis."” Much recent work has focused on organocatalytic Michael
addition of carbonyl compounds to nitroalkenes.>> Among these
reactions, Michael addition of aldehydes to nitroalkenes is of particular
interest because of the valuable synthetic intermediates that are gener-
ated.* 3-Aryl nitroalkenes have been the most common Michael accep-
tors for reactions developed by other research groups.* These
Michael reactions provide of3-disubstituted-y-nitrobutanals. Our
attention was drawn to nitroethylene as a Michael acceptor because the
adducts would bear a single substituent adjacent to the carbonyl and
could be readily converted to y*-amino acids. y*-Amino acids represent
potential building blocks for y-peptide® and heterogeneous backbone
foldamers.” In addition, derivatives of the neurotransmitter y-amino
butyric acid (GABA)? are of potential biomedical utility, as illustrated
by the use of Pregabalin and Baclofen to treat neurological disorders.”

The preparation of enantiomerically pure y-amino acids is challeng-
ing, and this synthetic burden has limited the study of y-peptide
foldamers to date. A variety of routes to enantioenriched y*-amino
acids have been described,'® but these approaches often involve
specialized chiral auxiliaries and may not be ideal for preparing
multigram quantities of protected y*-amino acids bearing diverse
side chain functionality, which is necessary for foldamer research.®’
Here we report an asymmetric organocatalytic method for aminoethyl-
ation of aldehydes, which leads to a new and efficient synthesis of
y%-amino acids (Scheme 1). Our approach pairs a chiral pyrrolidine
catalyst with a carefully chosen acidic co-catalyst to promote Michael
addition of aldehydes to nitroethylene with high enantioselectivity.

We initially evaluated two widely used chiral pyrrolidines, L-proline
and (S)-diphenylprolinol silyl ether (A),'" for the ability to promote
the Michael reaction between n-pentanal and nitroethylene (2:1 molar
ratio). We assumed that such reactions would proceed via enamine
intermediates. L-Proline (20 mol %) provided very little of the Michael
adduct; instead the major product in a variety of solvents resulted from
aldol condensation of n-pentanal, a process that is known to be
catalyzed by proline."? In contrast, when 20 mol % of A was employed
in toluene, the desired Michael adduct was generated in 95% yield
with >95% ee, and little or no aldol product was formed.

N
N"coon N orms o cooH

Previous work has shown that carefully chosen acidic co-
catalysts can enhance pyrrolidine- or imidazolidinone-catalyzed
Michael addition of aldehydes to enones,'> and we therefore
examined co-catalyst effects'* on the Michael addition of n-pentanal
to nitroethylene. When 5 mol % of A was employed as catalyst,
without any co-catalyst, <10% Michael adduct was generated after
1 h, and little further adduct was generated after 24 h (Table 1).
However, use of 5 mol % of A along with 200 mol % of acetic
acid gave a 95% yield of the Michael adduct after 24 h with
excellent stereoselectivity (>95% ee).'” These observations suggest
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Scheme 1
O Michael reaction 1t .
ON_~ + l)LH—> Osz\)LH — BocHN\/\rCOOH
R R R

Table 1. Organocatalyzed Michael Reaction

0]
catalyst A, co-catalyst B
ON_ 7 + H ON \/\)J\ H

Pr toluene, room temp. 24h z
1.0 eq. 2.0eq. Pr
entry catalyst co-catalyst yield® (%) ee
1 20 mol % none 95 >95%
2 5 mol % none <10 n.d.?
34 5 mol % HOACc (200 mol %) 95 >95%
4 2 mol % HOACc (20 mol %) 30 n.d.?
5 2 mol % TFA (20 mol %) 8 n.d.?
6° 2 mol % HOAc (200 mol %) 55 n.d?
7 2 mol % B (5 mol %) 96 >95%

“HOAc used as solvent. ” From 'H NMR of the crude reaction
mixture. € Determined by a 'H NMR ee assay.'® “ Not determined.

that the role of the acidic component may be to facilitate catalyst
turnover and/or to prevent catalyst deactivation pathways.

Many pyrrolidine-catalyzed processes require relatively high levels
of catalyst (10—20 mol %). Use of 2 mol % of A with 20 mol % of
acetic acid led to a substantial decline in efficiency (30% Michael
adduct; Table 1). Switching to a more acidic co-catalyst, trifluoroacetic
acid (20 mol %), caused a decrease in yield (8% Michael adduct).
Increasing the amount of acetic acid to 200 mol % led to only a modest
improvement (55% Michael adduct). Evaluation of a number of other
potential acidic co-catalysts identified 3-nitrobenzoic acid (B) as partic-
ularly effective: combining 2 mol % of pyrrolidine A with 5 mol %
of B provided the Michael adduct in 96% yield with >95% ee.

Having established A + B as an effective catalyst/co-catalyst pair for
enantioselective Michael reaction of n-pentanal, we next investigated
the scope for the aldehyde substrate (Table 2). These reactions were
carried out with 2 mol % of A and 20 mol % of B at 3 °C. Enantio-
selectivity was determined in most cases after reduction of the initial alde-
hyde product to the corresponding S-substituted-d-nitrobutanol derivative.
This approach enabled ee determination via HPLC because aldehyde
reduction eliminates the possibility of epimerization. As initially observed
for n-pentanal, a variety of aldehydes with hydrocarbon appendages
give excellent yields and enantioselectivities. Even a 3-branched substrate,
3-methylbutanal, can be employed, although elevated temperature (23 °C)
is required to achieve full conversion (Table 2, entry 3). Our long-term
interest in using y-amino acids to construct biologically active foldamers'”
will require access to examples that bear appropriately protected function-
al groups in the side chain. Entries 9—11 of Table 2 show that our
catalytic Michael addition method enables incorporation of side chains
corresponding to those of glutamic acid, tyrosine, and lysine into >
amino acid precursors, with excellent yields and enantioselectivities.

We used compound 2b, prepared on a 10 mmol scale reaction, to
show that the S-substituted-O-nitrobutanol derivatives generated via

10.1021/ja800345r CCC: $40.75 [1 2008 American Chemical Society



COMMUNICATIONS

Table 2. Highly Efficient and Enantioselective Michael Reaction of
Aldehydes with Nitroethylene

O 1) 2 mol% (S)-A, 20 mol% B

0N~ + HKH toluene, 3 °C OZN\/\,/\OH
R 2) excess NaBH,, MeOH, 0 °C R
1a-k 2a-k
entry product R t(h) yield? (%) ee’ (%)
1 2a Me 48 95 98
2 2b Et 48 96 98
3 2¢54 i-Pr 32 94 97
4 2d n-Bu 48 95 99
5 2e i-Bu 54 94 >99
6 2f Bn 32 93 99
7 2g¢ CHs-c-Hex 48 93 >99
8 2h¢ CH,COOMe 54 92 96
9 2i (CH,),COO'Bu 54 94 97
10 2j 4-0'BuC¢H,CH, 32 94 98
11 2k (CH2)4N(BOC)2 48 92 98

“Isoated yield. ” Determined by chiral HPLC analysis. © Determined
by chiral HPLC analysis on the corresponding aldehyde. ¢ At 23 °C.

Scheme 2
o] 1) 2 moi% (S)-A, 20 mol% B
ON. = HL toluene, 3°C, 48 h ON-~~ou
INF H 2) excess NaBH,, MeOH, 0 °C £t

10eq. Fl 20eq 2b  96% yield, 98% ee

HoCra07 0N _~_COOH NPIC Hy  BocHN._~_ COOH
o 250

3 92% yield, >95% ee 4 71% yield, >95% ee

Scheme 3
L-Phe-OMe- HCI o Ph Et,,,
EDCH, DIEA, CH,Cl
BocHN co,H EDCL DIEA, CHyCly /[ + J\_)
\/\i/ BocHN\/\:/lkN CO.Me O N
Et g H Boc
4 5 13%yield  69% yield

1) L-Phe-OMe- HCI o Ph
EDCH, DIEA, CHoCl, 88%
OZN\/\_/COZH z2 BOCHN\/\/U\N/[CO Me
H 2
s & N

&, 2) Hy, Pd/C
3 3)Boc,O, DIEA  77%

the Michael addition/reduction sequence could be converted in a
straightforward manner to appropriately protected, enantioenriched -
amino acids (Scheme 2). Jones oxidation of 2b provided the y-nitro-
a-alkylbutyric acid 3, which was then transformed to protected y*-
amino acid 4 in an efficient one-pot operation involving nitro group
reduction followed by Boc protection. The absolute configuration of
2b was determined as (R) by the X-ray structure analysis of the
L-phenylalanine derivative 5 (Scheme 3), and other /3-substituted-o-
nitrobutanol configurations were assigned by analogy. The enantio-
meric excess of 3 and 4 was measured by "H NMR after coupling of
these acids to L- and D-phenylalanine methyl ester. The short synthetic
route in Scheme 2 provides a high overall yield (62% from nitro-
ethylene) and is operationally simple.

Incorporation of y-amino acid residues into a growing peptide chain
can be difficult because of cyclization side reactions. For example,
carbodiimide-mediated coupling of Boc-protected y*-amino acid 4 (30
mM) to L-phenylalanine methyl ester provides only 13% yield of the
desired amide; the major product under these conditions is the N-Boc
y-lactam derived from 4 (69%; Scheme 3). However, the analogous
reaction with y-nitro acid 3, under identical conditions, gives the desired
amide in 88% yield. The nitro group can be subsequently reduced via
hydrogenation and protected. Thus, -nitro acids such as 3, intermedi-
ates in our synthetic route, are valuable building blocks for y-peptide
synthesis, with the nitro group serving as a protected amino group.

The highly enantioselective Michael additions reported here con-
stitute a method for formal aminoethylation of aldehydes. The reaction
is catalyzed by a chiral pyrrolidine, and relatively low catalyst loading
is possible if a carboxylic acid co-catalyst is used. When coupled with

subsequent aldehyde reduction, this process provides [3-substituted-
O-nitrobutanol derivatives, which are potentially valuable chiral
intermediates. We have shown that such intermediates can be
converted expeditiously to protected y*-amino acids, which are
interesting as foldamer building blocks. Relatively few methods
have been previously described for y-amino acid synthesis,'® and these
approaches might be challenging to apply to examples featuring diverse
side chain functionality. Mechanistic studies regarding the role of acid
co-catalyst and the catalytic pathway are in progress.'®
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