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NHC-catalyzed enantioselective access to
β-cyanocarboxylic esters via in situ substrate
alternation and release

Qingyun Wang1,5, Shuquan Wu 2,5, Juan Zou3,5, Xuyang Liang1, Chengli Mou3,
Pengcheng Zheng 1 & Yonggui Robin Chi 1,4

A carbene-catalyzed asymmetric access to chiral β-cyano carboxylic esters is
disclosed. The reaction proceeds between β,β-disubstituted enals and aro-
matic thiols involving enantioselectiveprotonationof enalβ-carbon. Twomain
factors contribute to the success of this reaction. One involves in situ ultrafast
addition of the aromatic thiol substrates to the carbon-carbon double bond of
the enal substrate. This reaction converts almost all enal substrate to a Thiol-
click Intermediate, significantly reducing aromatic thiol substrates con-
centration and suppressing the homo-coupling reaction of enals. Another
factor is an in situ release of enal substrate from the Thiol-click Intermediate
for the desired reaction to proceed effectively. The optically enriched β-cyano
carboxylic esters from our method can be readily transformed to medicines
that include γ-aminobutyric acids derivatives such as Rolipram. In addition to
synthetic utilities, our control of reaction outcomes via in situ substrate
modulation and release can likely inspire future reaction development.

Cyano is a basic structural motif in bioactive molecules and synthetic
building blocks1–10. A non-comprehensive survive of the literature
indicates that more than fifty drug molecules contain one or multiple
cyano groups, covering a variety of diseases such as cancers
(Fig. 1a)11–14. For example, Cilomilast15,16, a phosphodiesterase-4 (PDE4)
inhibitor, is developed for the treatment of respiratory disorders.
Deltamethrin17,18 is a widely used insecticide with high efficacy among
the pyrethroid insecticide families. The cyano unit is also a very con-
venient group for the synthesis of medicinal molecules such as non-
natural amino acids (e.g. γ-aminobutyric acids (GABA) and their deri-
vatives) for the treatment of neuro diseases that include Parkinson’s
disease and Huntington’s disease19–35. Given the proven applications,
efficient methods for the synthesis of cyano-containing molecules
especially in enantioselective manners, continue to receive con-
sideratinale attentions (Fig. 1b). Common synthetic methods include
metal-catalyzed asymmetric carbon-carbon bond couplings36–56 and

enantioselective hydrogenations57–64. Merits and limitations exist in
these reported methods. For instance, highly toxic cyano salts were
often used as the cyano sources in the metal-catalyzed coupling of
alkene with cyano anion43,47,48,64. The use of flammable hydrogen gas
for reductions may also bear limitations such as tolerance with other
reducible functional groups especially under high pressure61,62,64.

Here we report an approach for efficient and selective access to
β-cyano carboxylic esters which can be easily converted into
GABA derivatives with high optical purities (Fig. 1c). Our study
was motivated by our objectives in constructing chiral cyano-
containing molecules65 and non-natural amino acid derivatives66 via
N-heterocyclic carbene (NHC) catalysis67–92. Our reaction starts with
β-cyano enal (1a) as a key substrate. Undermost reaction conditions,
including those reported by Bode93, Scheidt94–98 and Huang99–101 for
β-protonation of other types of enal molecules, the substrate 1a
underwent homo-couplings to form 3a’ (Table 1)59,93. We then
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Table 1 | Initial studies of nucleophilesa

Entry Nucleophile Desired product
(%)b 3a

Homo-coupling
(%)b 3a'

1 MeOH 0 82

2 EtOH 0 77

3 PhOH 0 81

4 2a 80 0

5 2a-1 to 2a-4 0 67-83

6 2a-5 to 2a-6 0 0
aUnless otherwise specified, the reactions were conducted with 1a (0.10mmol), nucleophiles (0.10mmol), pre-NHC A (0.01mmol), base (0.02mmol) and solvents (2.0mL) at rt for 12 hrs. bIsolated
yield of 3a and 3a’.

Fig. 1 | Chiral cyano-containing functional molecules and the synthesis of chiral cyano group. a Bioactive molecules bearing cyanos or prepared from cyano
compounds. b Common method for synthesis of chiral cyano molecules. c NHC-catalyzed access to cyanos via modulated reaction pathway.
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reasoned that the concentration of enal 1a must be dramatically
reduced (Fig. 1c). A survey of nucleophiles that can undergo facile
1,4-addition with enal 1a revealed that aromatic thiols can quickly
react with enals almost quantitatively. Under such a condition with
enal nearly undetectable, homo-coupling product (3a’) was com-
pletely suppressed. At the same time, the desired β-cyano carboxylic
ester products 3 and 4 can be obtained with excellent yields and er
values. The dynamic Thiol-Michael addition click reaction102–109 of
enal and thiol (and release of enal substrate from the Thiol-Michael
click adduct) provide a good control over the reaction pathways and
outcomes. Our reaction can be easily scale up (open to five grams)
with as little as 0.5mol% NHC catalyst. The β-cyano carboxylic ester
products fromour reactions can be quickly transferred tomany non-
natural amino acid-based pharmaceuti-cals such as Phenibut,
Baclofen and Rolipram19,23,26,32. From the reaction design point of
view, our approach via in situ substrate alteration and release for
reaction controlsmay provide solutions for reaction discoveries and
practical synthesis.

Results
Reaction development
Our study starts with β-cyano enal as the substrate (Table 1). Inspired
by studies from previous works93–101, the alcohol and phenol were
chosen as the nucleophiles and proton sources (Table 1, entries 1 to 3).
Then the benzyl mercaptan, aliphatic thiols and amines were used
as nucleophiles (Table 1, entry 5 to 6). Unfortunately, under those
conditions, only homo-coupling of enal (to afford 3a’) was observed.
When aromatic thiols (such as p-toluene-thiol, 2a) were used (Table 1,
entry 4), the desired β-cyano carboxylic ester 3a was obtained with
80% yield.

Then, we employed β-cyano enal and p-toluene-thiol as themodel
reaction substrates to search for optimal conditions under various
NHC catalysts (Table 2). The desired β-cyano carboxylic ester (3a) was
disclosed in 74% isolated yield with potential enantioselectivity when
K2CO3 was used as base in the presence of THF under aminoindanol-
derived thiazolium pre-NHC A (Table 2, entry 1). The target product
was achieved slightly lower yield and er value when the N-Phenyl
substituent on NHC catalyst was replaced with N-Mesityl group (B)
(Table 2, entry 2). The chiral benzyl substitutedmorpholine-based pre-
NHCC gave the lower er value and yield comparedwith other catalysts
(Table 2, entry 3). Likewise, the good product yield but poor enan-
tioselectivity observed when switched to catalyst D (Table 2, entry 4).
We then evaluated the effect of pre-NHC A for the reaction system,
found that the inorganic base Cs2CO3 significantly decreased the
product enantioselectivity although high yield was obtained (Table 2,
entry 5). To our surprise, the reaction efficiency was notably improved
when organic bases such as DMAP, Et3N and DABCO were used, and
the results showed that DABCO could be the most suitable base to
further optimize the reaction condition (Table 2, entries 6 to 8). The
effect of solvent was also examined, and toluene exhibited to be the
suitable solvent (Table 2, entries 9 to 12). Finally, the optimal reaction
result was afforded when 4Å MS was chosen as the additive, the cor-
responding chiral β-cyano carboxylic ester was provided in 83% iso-
lated yieldwith excellent enantioselectivity (95:5 er) (Table 2, entry 13).
The absolute configuration of 3a was confirmed by X-ray crystal-
lographic analysis.

Substrate scope
Having established the optimal reaction condition for this NHC-
catalyzed hydro-thioesterification, the examples of the reaction was

Table 2 | Condition optimizationa

Entry Pre-NHC Base Solvent Yield (%)b Erc

1 A K2CO3 THF 74 84:16

2 B K2CO3 THF 64 62:38

3 C K2CO3 THF 71 64:36

4 D K2CO3 THF 85 55:45

5 A Cs2CO3 THF 83 50:50

6 A DMAP THF 76 88:12

7 A Et3N THF 62 71:29

8 A DABCO THF 88 85:15

9 A DABCO DCM 73 89:11

10 A DABCO EtOAc 78 94:6

11 A DABCO MTBE 56 91:9

12 A DABCO Toluene 81 94:6

13d A DABCO Toluene 83 95:5
aUnless otherwise specified, the reactions were conducted with 1a (0.10mmol), 2a (0.12mmol), pre-NHCs (0.01mmol), bases (0.02mmol) and solvents (2.0mL) at 30 oC for 11 hrs.
bIsolated yield of 3a.
cThe er values of 3a were determined via HPLC on the chiral stationary phase.
d100mg 4Å MS was used.
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examined with regard to the β-cyano enal substrates (Fig. 2). Various
substituents installed on the phenyl of β-cyano enal were tolerated in
this reaction condition. The good yields and excellent enantioselec-
tivities (up to 97:3 er) were observedwhen para- position of the phenyl
ring was substituted with electron-donating groups such as methoxyl,
methyl and t-butyl group (3b to 3d). Slightly lower enantioselectivity
was observed when electron-deficient fluoro-atom appeared on the
para- position compared with model reaction (3e). The similar results
showed when the substituents of phenyl ring bearing other electron-
withdrawing groups such as chrolo- and bromo-atoms (3f to 3h).
Similarly, the substituents at the meta- position of the benzene ring
also showed the same reaction regularities (3i to 3k). However, the
reaction results of the ortho-substituents were different, the er values
of both electron-withdrawing andelectron-donating groupsdecreased
slightly (3l to 3m). It suggested that possibly caused by the unfa-
vourable steric hindrance on the position. Other muti-substituents
were also suitable for the construction of reaction system, such as
dimethyl, dimethoxy and piperonyl, they all afforded excellent yields
and excellent enantioselectivities (3n to 3p). Notably, the medicinally
valuable product 3q had excellent yield and excellent er value.
Meanwhile, high yield and excellent er value was also obtained for the

phenyl ring bearing muti-substituent like trimethoxy (3r). Replace-
ment with biphenyl and napthyl group afforded in more than 90%
yields with excellent enantioselectivities (3s and 3t). Heterocyclic and
alkyl group such as thiophene, indole and cyclohexene were also
used in these reactions, obtained excellent to acceptable yields
and enantioselectivities (3u to 3w). Meanwhile, the α-methyl sub-
stituted β-cyano enal was well-tolerated, the desired product 3x was
produced in good yield and er value. Subsequently, reducing the cat-
alyst loading to 0.5mol% (pre-NHC A) and the model reaction was
conducted on a gram scale, 3a can be obtained in 76% yield with good
enantioselectivity.

The examples of the substituent aromatic thiols alsobe examined,
various of substituted aromatic thiols such as meta-, ortho-methyl
phenylthiol, steric dimethyl aromatic thiols, methoxyl phenylthoil and
napthalene group can be matched the reactions, give the good to
excellent yields and excellent enantioselectivities (4a to 4g).

Synthetic transformations
Furthermore, in order to demonstrate the synthetic utility of this
methodology, large-scale experimentwas achieved as shown in Fig. 3a.
The catalyst loading can be reduced to 1mol% and the reaction was

Fig. 2 | Substrate scopea. aReaction conditions as stated in Table 2, entry 13, yields were isolated yields after purification by column chromatography, er values were
determined via HPLC on chiral stationary phase. bThe reaction was carried out at 1 gram-scale based on 1a (6.4mmol), 0.0005mmol pre-NHCA, reaction time was 18 hrs.
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conducted on 5 gram scale (190 times scale up), 3q can be obtained
with good yield (71%) and excellent enantioselectivity (95:5 er), it
suggested that our methodology had the potential industrial applica-
tion prospects. Then, (R)-Rolipram 6 can be synthesized by an efficient
synthetic protocol. The product 3q was transesterified with MeOH
under the catalysis of sulfuric acid to provide the corresponding
methyl ester 5 in high yield, which is a biologically activemolecule and
important building block that can be easily converted into GABA-
derivatives. Then, 5 was reduced by NiCl2/NaBH4 in MeOH and the
corresponding (R)-Rolipram 6 can be readily obtained in high yield
with preserved enantioselectivity63,110,111. Meanwhile, the compounds
3a and 3f can be efficiently converted into the GABA drugs (R)-Phe-
nibut and (R)-Baclofen (Fig. 3b) by using the same methods110,111.

Mechanistic studies
In the previous works93–101, many examples of β-protonation reactions
had been developed, but the in-depth mechanisms were under-
developed and worth further exploring. We performed multiple stu-
dies to investigate the reactionmechanism. In the initial studies, it was
found that the reaction outcomes can bemodulated through different
substrates (Table 1). The gas chromatographymass spectrometry (GC-
MS) was employed to investigate the relationship between substrate
concentration and reaction time (Fig. 4a). First, the concentration of 1a
(model reaction, Table 2, entry 13) was detected by GC-MS and it was
found that substrate 1a was rapidly consumed (t1/2 < 1min), but no
corresponding product 3a can be detected within 4min, which means
that the consumptionof 1awasnot synchronizedwith the formationof
3a. Furthermore, as a comparative experiment, 2a-1was used to study
the mechanism of modulating reaction outcomes (Table 1, entry 5). It
was found that the consumption rate of 1a was much slower than the
model reaction (Table 2, entry 13) when 2a-1 existed. Meanwhile, the
concentration of2a-1had remainedduring thewhole reactionprocess.
The results suggested that the reactionoutcomes canbemodulatedby
different nucleophiles, such as 2a and 2a-1.

Based on the results of GC-MS, it was suggested that some inter-
mediate was generated very fast from the enal substrate 1a, then the
intermediate can be gradually converted into desired product 3a.
Fortunately, a new intermediate can be clearly detected after two
minutes by TLC in the model reaction. Meanwhile, this new inter-
mediate (I) can be synthesized independently by DABCO catalysis
without NHC (Fig. 4b), and isolated after 15min with 91% yield. The
structure of intermediate was confirmed by X-ray diffraction (I’).
Subsequently, the Thiol-click Intermediate Iwas used as a substrate to
react withNHC (model reaction condition), the desired product3a can
be obtained. The pKa of the thiols along with their structures were
important factors that impact the Thiol-Michael addition click reac-
tion. The ultrafast Thiol-Michael addition click reactionwasmore likely
to occur when the pKa value of substrates 2 are less than 10 (aromatic
thiols, pKa = 7–8, aliphatic thiols, pKa = 10–11)102,109. Thus, the formation
of Thiol-click Intermediate I from β-cyano enal and aromatic thiol can
extremely decrease the concentration of 1a. Therefore, the side reac-
tion pathway had been inhibited, the homo-coupling product 3a’
cannot be detected in the reaction.

To explore the formationof3a fromThiol-click Intermediate I, the
liquid chromatography-high resolutionmass spectrum (LC-HRMS)was
employed to detect the key intermediates in the model reaction
(Fig. 5a)112–115. There were two possible reaction pathways (NHC reacts
with substrate 1a and NHC reacts with Thiol-click Intermediate I) need
to be confirmed. The Breslow intermediate and the acylazolium
intermediate are isomers, it was difficult to directly identify these two
intermediates by mass-to-charge ratio. Therefore, additional experi-
ment was performed to identify the retention time of the Breslow
intermediate. In the previous work, the β-protonation reaction can be
inhibited when the strong base existed in the reaction93,116,117. There-
fore, DBUwas chosen as the strong base to assist the generation of the
Breslow intermediate II (Entry A), and the Breslow intermediate II can
be detected (Rt = 5.91) by LC-HRMS. In the same LC-HRMS condition,
two peaks (m/z = 447.1816) were found (4.85min and 5.98min) in

Fig. 3 | Synthetic transformations to GABAderivatives. a Potenial industrial application reaction with 1mol% NHC loading.b Synthesis of other chiral GABA derivatives:
(R)-Phenibut and (R)-Baclofen.
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Entry B, compared with the Entry A, the peak at 5.98min can be
identified as the Breslow intermediate II, and another peak (Rt = 4.85)
was attributed to the acylazolium intermediate III.

Further investigated the data of LC-HRMS, a semiquantitative
analysis was performed. The intensity of the Breslow intermediate II
was obviously higher than that of the acylazolium intermediate III.
Meanwhile, a trace acylazolium intermediate of NHC and Thiol-click
Intermediate I (see Supplementary Information) was detected in the
reaction, which means the NHC can react with Thiol-click Inter-
mediate I, but the acylazolium intermediate was still bearing the
thiol moiety after oxidation. Therefore, the pathway by which the
NHC reacted with Thiol-click Intermediate I cannot obtain the
desired product 3a.

According to the research of key intermediates, the NHC was
preferentially reacted with substrate 1a to form Breslow intermediate
II rather than the Thiol-click Intermediate I. Then, the acylazolium
intermediate III was formed from the Breslow intermediate II rather
than the redox reaction of Thiol-click Intermediate I. Thus, it was
suggested that the reactivity of β-cyano enal substrate 1a, an enal
which was bearing a strong electron-withdrawing group, was higher
than the Thiol-click Intermediate I. The NHCwas preferentially reacted
with 1a to form the corresponding Breslow intermediate.

Based on these mechanism studies, the possible mechanism was
proposed (Fig. 5b). The Thiol-click Intermediate I was generated from
substrates 1a and 2a through an ultrafast Thiol-Michael addition click
reaction, via in situ substrate alternation, which was catalyzed by
DABCO. During this reversible reaction process, 1a can be facile
released in a very low concentration from the Thiol-click Intermediate
I. Then 1a was added with NHC to form the corresponding Breslow
intermediate II. Subsequently, the acylazolium intermediate III was
obtained from theBreslow intermediate IIby asymmetric protonation.
Then, the substrate 2a was reacted with the acylazolium intermediate

III to form the desired product 3a. Without the in situ substrate
alternation, high concentration of 1a will lead to homo-coupling
reaction. It means that the reaction outcomes were related to the
concentration of substrates.

In summary, we developed an organic catalytic access to chiral β-
cyano carboxylic esters. Aromatic thiols were used to react with β,β-
disubstituted enals to form the corresponding desired products
involving enal β-carbon protonation as an enantio-determining step.
Keys to the success of our approaches include an ultrafast Thiol-
Michael addition click reaction between enals and aromatic thiols that
dramatically reduced the concentration and inhibits undesired homo-
coupling of the enal substrates. A facile reversed reaction of the Thiol-
Michael click adduct effectively releases enal substrate for the desired
reaction toproceed to form theβ-cyanocarboxylic ester products. Our
strategy in controlling reaction pathways via in situ substrate mod-
ulation can be further used in developing new reactions especially
those where effective concentration of the substates matter. The
desired β-cyano carboxylic ester products from our reactions, easily
obtained in scalable operations with low catalyst loadings, can be
readily converted to GABAmedicines such as Rolipram, Phenibut and
Baclofen.

Methods
General procedure for the catalytic reactions
To a dry 4.0mLvial equippedwith amagnetic stir bar, 1 (0.10mmol), 2
(0.12mmol), pre-NHC A (0.01mmol) and DABCO (0.02mmol) were
added. After purges with N2 in glove-box, anhydrous Toluene (2.0mL),
and 4Å MS (100mg) was added and sealed. The reaction mixture was
stirred at 30 °C for 11 hrs. Then the mixture was directly concentrated
under reduced pressure to afford a crude product. The crude product
was purified via column chromatography on silica gel (petroleum
ether/ethyl acetate = 15/1) to afford the desired product 3/4.

Fig. 4 | The research of Thiol-click intermediate. a Substrate concentration monitored via GC-MS. b Synthesis and confirmation of Thiol-click Intermediate.
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General procedure for the scale-up catalytic reactions
To a 100.0mL over-dried round bottom flask equipped with a mag-
netic stir bar, 1a (6.40mmol, 1 g), 2a (7.68mmol, 0.95 g), pre-NHC A
(0.0005mmol) and DABCO (0.001mmol) were added. The flask was
then sealed, purged and backfilled with N2 three times in glovebox
before adding Toluene (60.0mL). The reaction mixture was stirred at
30 °C for 18 hrs. Then the mixture was directly concentrated under
reduced pressure to afford a crude product. The crude product was
purified via column chromatography on silica gel (petroleum ether/
ethyl acetate = 15/1) to afford the desired product 3a in 76% yield
and 92:8 er.

Data availability
The experimental method and data generated in this study are pro-
vided in the Supplementary Information file. The crystallographic data
for structures of 1k, 3a, 3x and I’ have been deposited in the Cam-
bridge Crystallographic Data Centre under accession CCDC code
2220606, 2220572, 2277728 and 2221058, respectively. Copies of the
data can be obtained free of charge via www.ccdc.cam.ac.uk/data_
request/cif. All other data are available from the authors upon request.
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