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ABSTRACT: The utility of unprotected saccharides as chiral
auxiliaries in asymmetric synthesis remains largely undeveloped despite
their ready availability, configurational diversity, and chiral purity.
Here, we disclose an efficient achiral NHC catalytic strategy to
regioselectively install racemic α,α-disubstituted carboxylic esters on
specific OH groups of saccharides and simultaneously achieve their
dynamic kinetic resolution, which makes unprotected saccharides
effective chiral auxiliaries. Multiple controlling parameters, including stereoelectronic and steric effects, are employed to ensure
regioselectivity amplification and stereodifferentiation. By varying the structures of NHC catalysts, this strategy is suitable for
dynamic kinetic resolution of diverse racemic targets by installing them on different OH sites of structurally diverse unprotected
saccharides, greatly expanding the application of saccharides in asymmetric synthesis.
KEYWORDS: unprotected saccharide, chiral auxiliary, NHC catalysis, dynamic kinetic resolution, regio- and stereoselective

■ INTRODUCTION
Chirality is one of the fundamental characteristics of nature’s
living system.1 As prominent members of the chiral source,
naturally occurring amino acids, nucleotides, and saccharides
serve as versatile chirality precursors for diverse chiral catalysts,
ligands, and auxiliaries (Scheme 1a).2 For example, classical
chiral reagents such as 2-oxazolidone, aminophosphines and
alkaloids are all derived from amino acids.3 Saccharides, as a
major category of natural chiral molecules, contain the highest
density of functional groups and defined stereogenic centers in
a single small molecule, making them prime chiral pool
candidates for controlling asymmetric synthesis.4 To date,
several chiral saccharides have been developed and applied in
stereocontrolled chemical reactions.5 However, compared to
amino acids, the utility of saccharides as chiral reagents in
asymmetric synthesis and catalysis lags far behind, and is
mainly limited to the study of multiprotective saccharides
(Scheme 1b). For instance, the well-known Shi epoxidation
catalyst, disclosed by Shi and co-workers, is a series of
multiprotected D-fructose-derived chiral ketones, which have
proven to be an extremely powerful tool for obtaining optically
active epoxides.5a,b The pre-O-pivaloylated galactosyl amine
reported by Kunz and Sager5c as chiral auxiliary, showed
excellent performance in asymmetric reactions, such as Ugi,5d

Mannich5e and Diels−Alder.5f Currently, the study of
unprotected saccharides as chiral auxiliaries in asymmetric
synthesis has been rarely explored, despite their ready
availability, configurational diversity and chiral purity. The
main obstacle lies in the lack of efficient synthetic tools to
ensure good site-selective reactions on many similar OH

groups of saccharides while simultaneously guaranteeing good
stereoselectivity of the target. Given the multiple similar OH
groups of saccharides, introducing more controlling parameters
that can provide stereoelectronic or steric effects to achieve
effective regioselectivity amplification and stereodifferentiation
could offer attractive solutions to make unprotected saccha-
rides good auxiliaries. In recent years, we have been interested
in developing a multilayered selectivity-amplification strategy
to site-selectively modify certain OH groups in unprotected
saccharides.6 Considering that unprotected saccharides have
the advantage of being widely available, abundant, and cheap,
site-selectively installing racemic targets on certain OH groups
of unprotected saccharides to deliver their dynamic kinetic
chiral resolution will greatly expand the application of
saccharides in asymmetric synthesis.
Carboxylic acids and related carbonyl derivatives bearing

two substituents at the stereogenic α-carbon center are widely
found in pharmaceutical molecules.7 For example, R-
flurbiprofen has been found to offer neuroprotective effects
by inhibiting mitochondrial calcium overload in Alzheimer’s
disease, while S-flurbiprofen shows good anti-inflammatory
activity.8 Asymmetric synthesis of such single mirror-image
α,α-disubstituted carbonyl compounds is of great significance
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for drug development. Here, we explore unprotected
saccharides as chiral auxiliaries and disclose an efficient
strategy for the dynamic kinetic chiral resolution of α,α-
disubstituted carbonyl compounds through site-selective
installation of racemic targets on specific OH groups of
unprotected saccharides (Scheme 1c). Using α-methyl gluco-
side as a model example, flurbiprofen can be site-selectively
installed on the C(3)-OH group mediated by N-heterocyclic
carbene (NHC) and boronic acid to generate the correspond-
ing optically pure flurbiprofen-glucoside ester. The dynamic
formation of boronic ester provides transient protection for the
C(4,6)-OH groups in glucoside to offer regioselective control9

and simultaneously facilitates the arrangement of the reacting
group relative to shielding or coordinating effects, leading to
distinct stereodifferentiation. Additionally, the NHC catalyst
reacts with the active ester of flurbiprofen to form an acyl
azolium intermediate.10 The preferred R-type optical isomer
proceeds with transesterification with the boronic ester, while
the S-type isomer undergoes racemization under standard
conditions. These processes ultimately promote the dynamic
kinetic resolution of flurbiprofen, where multiple parameters
involving stereoelectronic effects and covalent or noncovalent
interactions brought by saccharides, boronic acids, and NHC
catalysts synergistically regulate the regio- and stereoselectivity.
This strategy can be easily tuned for different OH sites in
various configurations of saccharides by varying the structures
of boronic acids and NHC catalysts, resulting in the dynamic
kinetic resolution of diverse racemic targets.

■ METHODS
To start, we employed the active ester of flurbiprofen 1a and
glucoside 2 as model substrates to explore the reaction
conditions. In accordance with our previous observations,6a the
use of NHC as a catalyst in association with boronic acid as a
cocatalyst successfully led to site-selective transesterification.

Summarized in Scheme 2 are the key results of the model
reaction from extensive studies on the effects of achiral NHC

catalysts and boronic acids on regio- and stereoselectivity. The
combination of N1 and B1 produced the corresponding
product 3a with high regio- and stereoselectivity (entry 1).
Replacing the phenyl group (N1) with a trimethylphenyl group
(N2) in the NHC catalyst (entry 2) or subtly changing the
structure from N1 to N3 (entry 3) led to a significant drop in
the diastereomeric ratio, while the reaction yields and
regioselectivity remained basically unchanged. The use of
NHC catalyst N5 produced the product with a higher total
yield but extremely lower regio- and stereoselectivity (entry 5).

Scheme 1. (a−c) Strategy of Unprotected Saccharides as
Chiral Auxiliary in Asymmetric Synthesis

Scheme 2. Conditions for Unprotected Saccharides as
Chiral Auxiliary in Asymmetric Synthesis

aReaction conditions: 1a (0.1 mmol, 1.0 equiv), 2 (0.11 mmol, 1.1
equiv), N1 (0.01 mmol, 10 mol %), B1 (0.11 mmol, 1.1 equiv), t-
BuOLi (0.05 mmol, 0.5 equiv), ethyl acetate (2 mL), 4 Å MS (100
mg), 30 °C, 12 h. bNMR yield (paraiodoanisole was used as internal
standard). cDiastereomeric ratio (dr) determined by 1H NMR of the
crude C(3)-OH acylated product.
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Additionally, adjusting the position of substituents on the
phenyl ring of boronic acid (B1 to B2) led to a profound
decrease in yield and diastereomeric ratio (entry 6). Removing
one or both methoxy substituents on the phenyl ring of
boronic acid (B1 to B3, B9) resulted in no or very small
amounts of product (entry 7, 13). While keeping the
substituent position unchanged, simply modulating the type
of substituents in boronic acid (B1 to B7, B8) also had a
serious impact on the results (entry 11, 12). The absence of
boronic acid led to minimal product with low yield and
selectivity (entry 15). These findings clearly show that the
structures of both NHC catalysts and boronic acids
dramatically affect reaction yields and selectivity. Therefore,
it is feasible to engineer these effects in a combinatorial manner
to realize unprotected saccharides as chiral auxiliaries in
asymmetric synthesis.
The scope and applications of our strategy using active esters

of racemic α,α-disubstituted carbonyl compounds as targets
were evaluated (Scheme 3). Using D-glucoside as a model

saccharide, the combination of N1 and B1 worked effectively
for selective C(3)-OH esterification of glucoside and dynamic
kinetic resolution of various α,α-disubstituted carbonyl
substrates to obtain optically pure R-type products. A series
of nonsteroidal anti-inflammatory and analgesic drugs, such as
ibuprofen, loxoprofen, indoprofen, and ketoprofen, were
successfully installed on the C(3)-OH group of glucoside
with good yield and diastereomeric ratio (3a-3f). Various
commonly encountered functional groups such as halides,
ether, carbonyl, and amide were well tolerated. Notably, the
employment of optically pure S-type naproxen also resulted in
the formation of the R-type product (3c), albeit with a slightly
lower diastereomeric ratio, indicating the presence of
racemization and dynamic kinetic resolution process in the
reaction. Additionally, we were pleased to find that the α-
methyl group can be replaced by more sterically demanding
substituents such as ethyl (3h), cyclopentyl (3i), and benzyl
groups (3j), demonstrating the generality of the reaction. Of
note, the S-type cyclohexenyl-substituted carbonyl substrate
was also compatible with the reaction conditions, affording the
corresponding R-type product 3k. Among these products, the
structure of 3b and 3k were unambiguously assigned by X-ray
diffraction analysis.11 To verify the flexibility of the strategy, we
also explored the conditions for the selective reaction between
galactoside and flurbiprofen. To our delight, when the
combination of N3 and B2 was employed, flurbiprofen was
successfully installed on the C(2)-OH group of galactoside,
resulting in the corresponding product 3l with excellent regio-
and stereoselectivity. Based on these results, it is reasonable to
expect dynamic kinetic resolution of diverse racemic targets
through site-selective transesterification on different OH
groups of various types of saccharides.
The practicality of the protocol was evidenced by the

efficient Gram-scale synthesis of optically pure flurbiprofen-
glucoside compound 3a with good regio- and stereoselectivity
under standard conditions (Scheme 4). To assess the synthetic

utility of the product, various transformations of the ester bond
were carried out. For example, R-type flurbiprofen 4a with high
enantiomeric ratio (er) can be obtained by hydrolysis of ester
3a under alkaline conditions.12 Amine exchange of 3a with
ammonium hydroxide gave amide 4b in good yield,13 and ester
exchange of 3a in a methanol solution of methylsulfonic acid
was feasible, resulting in the corresponding ester 4c with good
efficiency.14

Scheme 3. Scope of α,α-Disubstituted Carbonyl Substratesa

aGeneral reaction conditions: 1 (0.1 mmol, 1.0 equiv), 2 (0.11 mmol,
1.1 equiv), N1 (10 mol %), B1 (0.11 mmol, 1.1 equiv), t-BuOLi (0.05
mmol, 0.5 equiv), ethyl acetate (2 mL), 4 Å MS (100 mg), 30 °C, 12
h. bDiastereomeric ratio (R/S). cS-type optical isomer substrates were
used. d1i (0.15 mmol, 1.5 equiv), 2 (0.1 mmol, 1.0 equiv). eReaction
conditions: 1 (0.1 mmol, 1.0 equiv), β-D-phenylgalactoside (0.11
mmol, 1.1 equiv), N3 (10 mol %), B2 (0.11 mmol, 1.1 equiv), K2CO3
(0.05 mmol, 0.5 equiv), 1,4-dioxane (2 mL), 4 Å MS (100 mg), 30
°C, 12 h.

Scheme 4. Synthetic Utility and Product Derivatization
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■ CONCLUSIONS
In summary, we have developed an efficient asymmetric
synthesis strategy to utilize unprotected saccharides as chiral
auxiliaries and achieve dynamic kinetic resolution of α,α-
disubstituted carbonyl compounds by their regioselective
installation on unprotected saccharides mediated by NHC
catalysts and boronic acids. The formation of boronic ester
transiently shields certain OH groups in saccharides, providing
a prominent regulatory effect for controlling the regio- and
stereoselectivity of the reaction. The covalent and noncovalent
interactions as well as steric effects generated between boronic
ester and NHC catalysts can be systematically and modularly
adjusted to achieve dynamic kinetic resolution of diverse
racemic targets by installing them on different OH sites in
various configurations of saccharides. The utility of this
strategy has enabled the facile preparation of a wide range of
chiral carbonyl molecules through further transformations of
the ester group. Given the ready availability and configura-
tional diversity associated with unprotected saccharides, we
expect our approach to enrich and expand the application of
saccharides as chiral auxiliaries in asymmetric synthesis.
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