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Organocatalyzed atroposelective dynamic kinetic
resolutions via transient seven-membered

cyclic hemiacetals

Qinglong Zhou't, Yuhang Chen't, Wei Yuan't, Sai Vikrama Chaitanya Vummaleti*t,
Xinyue Xiang', Bowen Zhu', Yonggui Robin Chi**, Xinglong Zhang*?*, Xing Yang'*

Catalytic atroposelective dynamic kinetic resolution via the formation of transient bridged biaryl intermediates
represents an expedient route for the synthesis of axially chiral biaryls. Progress in this field has been limited to
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the reactions promoted by bridged biaryl intermediates with five- or six-membered rings. Herein we demonstrate
the first example of a carbene-catalyzed atroposelective dynamic kinetic acylation reaction via transient seven-
membered cyclic hemiacetals. The key for the success of this reaction relies on the formation and configurational
instability of the transient seven-membered cyclic hemiacetal intermediate. The axially chiral biaryl aldehyde
products obtained via this method can undergo a series of further transformations. Notably, one of the axially
chiral biaryl aldehyde products can be used as the key and common intermediate for the asymmetric synthesis of
natural product steganone. Preliminary density functional theory calculations reveal the molecular origins under-

lying the observed chemo- and enantioselectivity outcomes.

INTRODUCTION

Axially chiral architectures, especially biaryl-based atropisomeric ar-
chitectures, are increasingly encountered in modern materials, bio-
active molecules, natural products, and privileged chiral catalysts or
ligands (I-5). Therefore, asymmetric synthesis of biaryl atropisomers
has attracted substantial attention from chemists (6-11). Among
numerous reported methods, the atroposelective dynamic kinetic
resolution (DKR) involving ring manipulations of configurationally
labile bridged biaryls stands out as a cutting-edge technology for
the construction of atropisomeric biaryls (12-15). The key to the
success of these reactions is the rapid racemization of the bridged
biaryls (Fig. 1A), as well as hydrogen bond-assisted racemization
(16). Overall, the atroposelective DKR involving ring manipulations
can be categorized into two types: (i) DKR of configurationally labile
bridged biaryls (type I) and (ii) DKR via the formation of configura-
tionally labile bridged biaryl intermediates or transition states (TS)
(type II). For the former category, substantial advancements have
been made in the dynamic kinetic ring-opening reactions of bridged
biaryls containing five- (17-24) or six- (25-32) membered rings,
since Bringmann reported the lactone strategy for the atroposelec-
tive synthesis of axially chiral biaryls (25). Recently, our group re-
ported an organocatalyzed dynamic kinetic hydrolytic ring-opening
reaction of seven-membered bridged biaryls (33). For the latter cat-
egory, the racemization usually required the interaction between
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heteroatom-containing functional groups and unsaturated carbonyls
to form transient configurationally labile bridged biaryl intermediates.
Many elegant DKR reactions have been developed via the formation
of transient five- (34-37) or six- (38-52) membered bridged biaryl in-
termediates as reported by Akiyama (38), Wang (39-41), Hornillos
and Lassaletta (42), Chi and Jin (43, 44), Fu (45), Cheng (35, 36), and
Wang (37), or TS through Lewis acid-base interaction as pioneered by
Hornillos and Lassaletta (35, 49-52), Clayden (46), and Wang (47).
However, the DKR reaction involving the formation of bridged biaryl
intermediates with larger ring size, such as seven-membered bridged
biaryl intermediates, remains underdeveloped and challenging. The
main challenge deals with the racemization issue of the bridged biaryl
intermediates with larger-sized rings (53). From five-, six-, to seven-
membered bridged biaryl intermediates, the angles around the axis in
the racemization TS become smaller, which leads to an increase for
the rotation barrier such that the racemization becomes more slowly,
making highly atroposelective DKR reaction more difficult.

Our group is interested in the organocatalyzed asymmetric syn-
thesis and the conversion of bridged biaryls (33, 54, 55). Herein, we
reported a carbene-catalyzed (56-62) atroposelective DKR via the
formation of transient seven-membered cyclic hemiacetals (Fig. 1B).
The key to the success of this reaction is the formation and configu-
rational instability of the transient seven-membered cyclic hemiace-
tal intermediate. In addition, the carbene-catalyzed atroposelective
acylation process is also important, which afforded a series of axially
chiral biaryl aldehyde products in high yields with excellent enan-
tioselectivities. Notably, one of the axially chiral biaryl aldehyde
products can be served as a key and common intermediate for the
asymmetric synthesis of natural product (steganone) (63-71). In
previous works, to obtain this key intermediate, the use of stoichio-
metric chiral sources [chiral pool (66-68), chiral auxiliary (69, 70),
and chiral reagent (71)] and multistep synthesis are required. Herein,
we can achieve the catalytic asymmetric synthesis of this key inter-
mediate in two steps with a higher yield, which highlights the impor-
tance of this work.
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A Two types of atroposelective dynamic kinetic resolution (DKR) involving ring manipulations
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Fig. 1. Atroposelective DKRs involving ring manipulations. (A) Two types of atroposelective dynamic kinetic resolution (DKR) involving ring manipulations. (B) Carbene-

catalyzed atroposelective DKR via transient seven-membered cyclic hemiacetals.

RESULTS

Reaction condition optimization

We initiated our studies using biaryl hydroxyl aldehyde 1a and
2-naphthaldehyde 2a as the model substrates in the presence of a
tetra-tert-butyldiphenylquinone (DQ) (72) oxidant searching for ap-
propriate conditions, with Table 1 summarizing the main results.
The enantiomerically enriched axially chiral biaryl aldehyde product
3a was smoothly formed with promising enantiomeric ratio (er)
value using an aminoindanol-derived precatalyst with a N-mesityl
substituent (A) (73) and examined by using DIPEA as the base and
DCM as the solvent (Table 1, entry 1). Replacing the N-mesityl unit
of A with an electron-deficient trichlorophenyl group (B) (74) gave
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the product in 52% yield and 57:43 er (Table 1, entry 2). The side
product biaryl seven-membered lactone 4 was detected when a prec-
atalyst (C) (75) with a more electron-deficient N-pentafluorophenyl
substitute was used, and the ratio of target product 3a to side product
41is 2:1 (Table 1, entry 3). Satisfactory, the reaction enantioselectivity
was notably improved when using catalyst D (Table 1, entry 4) (76).
Thereafter, when phenylalanine-derived catalyst E (77) was used, the
product was obtained in good yield and enantioselectivity, and the
ratio of target product 3a to side product 4 is >20:1 (Table 1, entry 5).
The reaction solvent proved to be essential to the reaction enantiose-
lectivities (Table 1, entries 6 to 9), and the solvent 1,2-dichloroethane
(DCE) was demonstrated to be the best choice in terms of both yields
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Table 1. Optimization of the reaction conditions. General conditions: 1a (0.10 mmol), 2a (0.12 mmol), NHC precursor (0.02 mmol), base (0.1 mmol), 4-A MS

(100 mg), DQ (0.12 mmol) and solvent (2.0 ml), 72 hours.
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and enantioselectivities (Table 1, entry 9). The effect of base was evalu-
ated for the reaction system (Table 1, entries 10 to 13), and the results
showed that inorganic base LIOH could slightly improve the enantiose-
lectivity (Table 1, entry 13), even if the yield was moderate. Then, we
found that increasing the amount of LiOH gave an apparent improve-
ment in yield and enantioselectivity (94% yield and 94:6 er; Table 1,
entry 14). The absolute configuration of 3a was confirmed by x-ray
analysis. We next screened different aldehydes (Table 1, entries 14 to 16
and see the Supplementary Materials for details) to further optimize
the reaction conditions. Last, when phenanthrene-9-carbaldehyde 2¢
was used, the corresponding product 3¢ was obtained in high yield and
enantioselectivity (94% yield and 96:4 er in Table 1, entry 16).

Substrate scope
With the optimal reaction conditions in hand, we next evaluated the
scope of the carbene-catalyzed atroposelective acylation reaction,

Zhou et al., Sci. Adv. 11, eadx8255 (2025) 3 October 2025

§NMR yields using 1,3,5-trimethoxybenzzene as internal standard;
#the er values were determined by HPLC using a chiral stationary phase;

fldetermined via
**jsolated yield.

and the results are shown in Fig. 2. A wide range of biaryl hydroxyl
aldehydes were compatible in this reaction, giving the axially chiral
biaryl aldehyde products (3¢ to 3am) in high yields (up to 99%) and
excellent enantioselectivities (up to 99:1 er). Initially, this reaction
was investigated with a range of biaryls bearing an upper benzene
ring and a lower naphthalene ring (3d to 3t). Electron-donating or
-withdrawing substituents at the 5- and 4-position of the upper ben-
zene ring were all tolerated, and the chiral aldehyde products (3d to
3j) were isolated in 60 to 99% yields and 93:7 to 98:2 er. Biaryl sub-
strates with fluorine atom at the 3-position of the upper benzene
ring underwent the reaction smoothly, with the desired product
(3k) obtained in 72% yield and 95:5 er. To our delight, switching the
phenyl group to a thienyl group, a heteroaryl-containing axially chi-
ral biaryl product (31) was accessed in high yield and er value. In
addition, the reaction was carried out with good conversion and
enantiomeric induction for a variety of substrates with different
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Fig. 2. Substrate scope. Reaction conditions: 1 (0.10 mmol), 2c (0.12 mmol), NHC-HBF, E (20 mol%), LiOH (3.0 equiv), 4-A MS (100 mg), DQ (1.2 equiv), and anhydrous DCE
(2.0 ml) was added and stirred at room temperature for 7 days; b Reactions for 72 hours; [dq (0.10 mmol), 2c (0.12 mmol), NHC-HBF4 A (20 mol%), LiOH (3.0 equiv), 4-AMS
(100 mg), DQ (1.2 equiv), and anhydrous CHCl3 (2.0 ml) was added and stirred at room temperature for 7 days.
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substituents at the lower naphthalene ring (3 m to 3t). Notably, the
reaction proceeded smoothly when the naphthalene ring was sub-
stituted with basic N-atoms, affording the corresponding products
(3n and 3o0) in high yields with excellent enantioselectivities. Next,
biaryl substrates containing an upper naphthalene ring and a lower
benzene ring were investigated. Switching the carbene catalyst E to
A, a series of this type of substrates were converted into the corre-
sponding acylation adducts (3u to 3y) with satisfactory results. Last,
we found that the biaryl substrates with two benzene rings were also
amenable in the reaction. Installing different functional groups such
as methyl, methoxy group and chlorine atom on the 6-position of
the lower benzene ring, afforded the target axially chiral biaryl prod-
ucts (3z to 3ab) in high yields and excellent enantioselectivities.
Next, a series of substitutes on both upper and lower benzene ring
were examined, with desired products (3ac to 3am) formed in con-
sistently good to excellent results.

Synthetic applications

The synthetic utility of this atroposelective dynamic kinetic acyla-
tion reaction has been demonstrated by a scale-up reaction, several
transformations and the application for the formal synthesis of nat-
ural product (steganone). First, we carried out a gram-scale reaction
of compound 1a under a lower catalyst loading (10 mol %), which
afforded axially chiral biaryl aldehyde product 3¢ in comparable
results as the above small-scale reaction (95% yield and 95:5 er,
Fig. 3A). Then, several synthetic transformations of compound 3¢
were conducted (Fig. 3A). The Wittig reaction of 3¢ with the stable
ester-bearing ylide resulted in the formation of the target olefin de-
rivative 5a in 99% yield, 7:1 E:Z ratio, and 95:5 er. Oxidation of the
aldehyde group could yield axially chiral biaryl carboxylic acid 5b
in good yields and er value. Treatment of 3¢ with P-(1-diazo-2-
oxopropyl)-dimethyl ester produces alkyne product 5¢ in 79% yield
and 95:5 er. In addition, axially chiral diol 5d could be obtained in
99% yield by reducing 3a with LiAlH,. Both the aldehyde and ester
groups in 3¢ could be converted into hydroxyl groups (5e) through
a one-pot, two-step method without loss of enantiopurity. The hy-
droxymethyl group of 5¢ can be further oxidized to an aldehyde
group (5f), and the enantiomeric excess (ee) was maintained. Last,
the related dibromo chemical 5g could be afforded from 5d in a
good yield without erosion of the enantioselectivity. This dibromide
can serve as a versatile precursor in nucleophilic substitutions.

We found that our method can be used for the synthesis of a key in-
termediate in the asymmetric total synthesis of Steganone (Fig. 3B). We
started with readily available aryl iodide and arylboronic acid to obtain
biaryl hydroxyl aldehyde 6 in 70% yield through Suzuki-Miyaura cou-
pling. Then, the key intermediate 7 was obtained in good yield and en-
antioselectivity (80% yield and 95.5:4.5 er) via the carbene-catalyzed
atroposelective DKR under the above standard conditions. In previous
works (66-71), to obtain this type of axially chiral aldehyde intermedi-
ate usually required the use of stoichiometric chiral sources and multi-
step synthesis. Treatment of 7 with methyl lithium produced 8 in 92%
yield, 96:4 er and 3.2:1 diastereomeric ratio (dr). Then, the primary hy-
droxyl group can be selectively protected by TBSCl to obtained 9 in 80%
yield and 95:5 er. On the basis of the reported synthetic route (64, 68, 71),
a formal total synthesis of (4)-steganone could be achieved.

Mechanistic studies
To understand the reaction mechanism, both experiments and den-
sity functional theory (DFT) calculations were performed. First, we

Zhou et al., Sci. Adv. 11, eadx8255 (2025) 3 October 2025

studied the rotational barriers for the enantiomerization of substrate
la and seven-membered bridged biaryl hemiacetal intermediate
1a’. The computed barrier of substrate 1a is 34.8 kcal/mol (Fig. 4A),
indicating that 1a cannot enantiomerize directly via rotation about
the axial C—C bond under the reaction conditions. Instead, the en-
antiomerization is feasible through the intermediary of the lower
energy pathway involving firstly the conversion of 1a into hemiace-
tal 1a” and the subsequent enantiomerization of 1a’, which has a
barrier of 19.9 or 22.6 kcal/mol (see fig. S4A), depending on the
chirality of the hemiacetal carbon (Fig. 4, B and D). This suggests
that bridged biaryl intermediate 1a’ is configurational labile under
reaction conditions. Since the bridged biaryl hemiacetal intermedi-
ate 1a’ is a minor part of an equilibrating mixture (via ring-closing
and ring-opening), we cannot determine the rotational barrier ex-
perimentally. However, we successfully determined the rotational
barrier of the bridged biaryl lactone 4, which has a similar structure
to bridged biaryl hemiacetal intermediate 1a’. We performed the
chiral high-performance liquid chromatography (HPLC) analysis of
the lactone 4. Gratifyingly, a Batman-type chromatogram (78) was
observed. Subsequently, we submitted this chromatogram to DCX-
plorer software designed by Schurig group (79), and the rotation-
al barrier of lactone 4 was determined as 21.9 kcal/mol (Fig. 4C),
which is in excellent agreement with the computed rotational bar-
rier of 4 (22.2 kcal/mol; see fig. S4B). Notably, the rotational barrier
of bridged biaryl hemiacetal intermediate 1a" (19.9 or 22.6 kcal/
mol) is slightly lower than the rotational barrier required to isolate
the individual atropisomers (24 kcal/mol) (2), which demonstrates
the great challenge for the DKR via this intermediate. On the basis
of the above preliminary results and the x-ray crystal structure of
the catalytic adduct 3a, a possible reaction pathway is proposed
in Fig. 4D. The addition of carbene catalyst to aldehyde 2¢ forms
Breslow intermediate I, which after oxidation affords azolium inter-
mediate II. Compound R-1a reacts with acyl azolium intermediate
II faster than compound S-1a, and the compound S-1a is converted
to R-1a by forming the configurationally labile bridged biaryl hemi-
acetal intermediate 1a’, thus finally providing the observed R-3c¢
product in high yield with excellent enantioselectivity.

To elucidate the observed enantioselectivity, DFT calculations
were performed, focusing on the key enantio-determining step of
this transformation (Fig. 5A). Notably, this step involves the C—O
bond formation between hydroxyl group in 1a and the carbonyl car-
bon of acyl azolium intermediate II. Considering the prochiral na-
ture of the carbonyl carbon in II, we examined the key TS structures,
allowing attacks from both the Re-face and the Si-face by the OH
group on either R or S conformers of 1a. The TS structures for both
Re- and the Si-face attacks of the OH group on either the R or S
conformer of 1a, along with their relative Gibbs energies are pre-
sented in Fig. 5A. For the R conformer, the calculated TS barriers for
the model reaction reveal that the OH group attack at the carbonyl
carbon of the acyl azolium intermediate from the Si-face, TS-R-Si, is
more favorable by 3.5 kcal/mol compared to the Re-face, TS-R-Re.
On the other hand, for the S conformer, the computed TS barrier for
the attack from the Re-face, TS-S-Re, is slightly lower in energy by
0.6 kcal/mol compared to the Si-face, TS-S-Si. Overall, the calcu-
lated TS barriers suggest that the acylation of R-1a via TS-R-Si has a
barrier that is 2.9 kcal/mol lower than the acylation of S-1a via TS-
S-Re, resulting in a predicted ee of 98.5% for the acylated product
R-3c, consistent with the experimentally observed enantioselectivity.
TS-R-Si is favored over TS-S-Re primarily because of the former’s
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A Gram-scale synthesis with a lower catalyst loading and synthetic transformations of 3¢
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Fig. 3. Synthetic transformations of products and applications in the synthesis of natural product. (A) @Ethyl (triphenylphosphoranylidene)acetate, CH,Cl,, 25°C,
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Fig. 4. Determination of the rotational barrier of key compounds and the proposed mechanism. (A) DFT estimated rotational barrier of compound 1a. (B) DFT esti-
mated rotational barrier of compound 1a’ (C) HPLC chart of compound 4 at room temperature, experiment and computed value of the rotational barrier of compound 4.

(D) Proposed reaction mechanism.

much lower distortion energy (by 18.1 kcal/mol) between the two in-
teracting fragments as they approach each other to form the TS, which
more than compensates its less stabilizing (by 14.7 kcal/mol) nonco-
valent interactions, including n-n and cation-n stacking present in
both TSs (fig. S2) (see table S4 in the Supplementary Materials).

In the studied transformation, compound 4 may be produced
when the N-heterocyclic carbene (NHC) catalyst react with sub-
strate 1a to form the acyl azolium intermediate, followed by an in-
tramolecular cyclization reaction. To understand why compound 4
is formed only as a by-product and compound R-3c is formed as a
predominant product (chemoselectivity), we investigated the ther-
modynamics governing the formation of acyl azolium intermediates
II (from NHC and 2¢) and III (from NHC and 1a, see SI). Our
findings suggest that the formation of II (AG, = —3.1 kcal/mol) is

Zhou et al., Sci. Adv. 11, eadx8255 (2025) 3 October 2025

more favorable by 2.5 kcal/mol compared to III (AG, = —0.6 kcal/
mol). In addition, the computed reaction barrier for the C—C bond
formation when the NHC carbon atom attacks the carbonyl carbon
of substrate 2¢ (TS-2c; Fig. 5B) is lower by 5.5 kcal/mol than the
corresponding barrier when the NHC carbon attacks the carbonyl
carbon of substrate 1a (TS-1a; Fig. 5B). Thus, both thermodynami-
cally and kinetically, the formation of product R-3c¢ is more favored
over the formation of compound 4.

DISCUSSION

In summary, we have developed a carbene-catalyzed dynamic ki-
netic acylation via the formation of transient bridged biaryl seven-
membered cyclic hemiacetals. A series of axially chiral biaryl aldehyde
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A DFT calculations to clarify the enantioselectivity
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Fig. 5. DFT calculations to clarify the enantio- and chemo-selectivities. (A) DFT calculations to clarify the enantioselectivity. (B) DFT calculations to clarify the che-
moselectivity. Key bond distances are given in A. Activation barriers are given relative to the lowest activation barrier. Gibbs energies were computed at SMD(DCE)-M06-
2X/def2-TZVP//M06-2X/def2-SVP level of theory (see Sl for full computational methods).

products were obtained in high yields with excellent enantioselectivi-
ties. One of the chiral aldehyde products can be used as the key inter-
mediate for the asymmetric synthesis of steganone. Mechanism studies
showed that the key for the success of this DKR reaction is the forma-
tion of transient seven-membered cyclic hemiacetals, which has rela-
tively higher rotation barriers yet still is configurational labile under
the reaction conditions. We believe that this approach will provide a
unique perspective on the development of DKR for the enantiocon-
vergent synthesis of axially chiral compounds.

MATERIALS AND METHODS

General procedure

All reactions were monitored by thin-layer chromatography (TLC).
TLC analysis was performed by illumination with an ultraviolet (UV)
lamp (254 nm). Anhydrous DCE was purchased from commercial
sources, and anhydrous tetrahydrofuran (THF) was distilled from
sodium benzophenone ketyl. Anhydrous CH,Cl, and CHCI; was dis-
tilled from CaH, under an atmosphere of nitrogen. All flash chroma-
tography was packed with silica gel as the stationary phase. "H nuclear
magnetic resonance (NMR) spectra were recorded on a Bruker
(500 and 700 MHz) and JNM-ECZL400S (400 MHz) instrument, and
chemical shifts were reported in parts per million (ppm) downfield
from internal tetramethylsilane (TMS) with the solvent resonance as

Zhou et al., Sci. Adv. 11, eadx8255 (2025) 3 October 2025

the internal standard [CDCl;, 6 = 7.26 ppm; dimethyl sulfoxide
(DMSO), 8 = 2.50 ppm)]. ">C NMR spectra were recorded on a Bruker
(126 and 176 MHz) and JNM-ECZL400S (101 MHz) instrument, and
chemical shifts were reported in parts per million downfield from
TMS with the solvent resonance as the internal standard (CDCls,
& = 77 ppm; DMSO, & = 39.50 ppm). '°F NMR spectra were recorded
on a Bruker (471 and 659 MHz) instrument. Infrared spectra were re-
corded on a TGA4000 Fourier transform infrared Frontier spectrom-
eter. Optical rotations were measured on a WZZ-2B polarimeter.
High-resolution mass spectrometry (MS) analysis was carried out us-
ing a time-of-flight MS instrument with an electrospray ionization
source. X-ray data were taken on an Agilent SuperNova x-ray diffrac-
tometer equipped with a large area charge-coupled device detector.
HPLC analysis was performed on Shimadzu SIL-16 with UV detector.

General procedure for the NHC-catalyzed

asymmetric reaction

To a dried 4-ml test tube with a stir bar was added the carbene cata-
lyst E (20 mol %), substrates 1 (0.1 mmol), 2 (0.12 mmol, 1.2 equiv),
4-A MS (100 mg), DQ (49.8 mg, 1.2 equiv), anhydrous DCE (2.0 ml)
and LiOH (3.0 equiv). The reaction mixture was stirred at room
temperature for 3 to 7 days until the starting material disappeared as
indicated by TLC and then directly purified by silica gel column
chromatography to afford the desired product (R)-3 (PE/EA = 20:1).
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