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ABSTRACT: Different Z/E-isomers of functional molecules display distinct chemical and biological activities. The E → Z
isomerization reaction is a contra-thermodynamic direction and presents a long-standing challenge in synthetic transformation. To
date, organic catalysis methods for manipulating E/Z isomerization are still under development. Here we show a new N-heterocyclic
carbene (NHC)-catalyzed E/Z isomerization mode. The E-isomer enedial undergoes E/Z isomerization to give a Z-isomer Breslow
intermediate via NHC catalysis, and an intramolecular hydrogen bond can greatly stabilize this conformation. Subsequently, the
Brønsted acid promotes the further redox-neutral reaction. The desired ralfuranone products obtained from our method can be
readily transformed to various functional molecules.

The E/Z isomerization of alkenes has always been a
challenge since the discovery of alkenes themselves

(Figure 1a). For simple alkenes, Z → E isomerization is
thermodynamically favored.1−3 Notably, different Z/E-isomers
of functional molecules exhibit distinct chemical reactivities
and biological activities.4,5 In contrast, the E → Z isomer-
ization reaction is contra-thermodynamic direction, which
presents long-standing challenges in synthetic transforma-
tion.2,3,6−8 Through sustained innovation coupled with the
importance of Z/E-isomer alkenes in functional molecules,
multiple methodologies and catalytic activation modes are now
widely used to facilitate contra-thermodynamic reactions.
Currently, numerous efficient methods for E/Z isomerization
are available, which include photo-,5,9−23 enzyme-,21,24,25 and
transition metal-catalysis,26−37 as well as various types of
synergistic and relay catalysis.18,19,21,25 Among organocatalysts,
amino- and carbene catalysts have also been utilized; the
organic catalyst-bound E-isomer intermediates were obtained,
and then, photoinduced E → Z isomerization reactions were
achieved via photosensitization.18,19 Until now, single organic
catalysis methods for E/Z isomerization are still under
development.

Such furanone derivatives are fundamental structural motifs
in both natural and synthetic bioactive molecules (Figure
1b).38−42 The ralfuranones include natural products ralfur-
anones A, B, and L.39−43 Moreover, xenofuranone B has been
reported to exhibit cytotoxic activity.38−40,42,43 Flupyradifur-

one, as a new type of insecticide, was developed and marketed
by Bayer.44−46 For another, rofecoxib,47−50 a noteworthy
example of a dual inhibitor targeting lipoxygenase and
cyclooxygenase was also developed.

Here we report a new and concise strategy that does not rely
on any transition metal or light but instead utilizes simple N-
heterocyclic carbene (NHC)51−57 catalysts at mild conditions
to achieve the E → Z isomerization. This approach enables the
synthesis of ralfuranone products with Z-type C�C double
bonds (Figure 1c). E-Isomer enedial (1a) served as a starting
substrate. NHC reacted with the β-aldehyde group in substrate
1a to generate the corresponding E-isomer Breslow inter-
mediate I. The rotational energy barrier of its C�C double
bond in Breslow intermediate I is extremely lower than that of
substrate 1a (E → Z △G⧧ = 44.4 kcal/mol, w/o NHC).
Meanwhile, the intramolecular hydrogen bonding stabilized
the Z-isomer Breslow intermediate. After that, it underwent an
E → Z isomerization reaction to promote the intramolecular
cycloaddition. Then, a Brønsted acid was employed as both a
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proton source and oxidant. It can accelerate the process of a
redox-neutral reaction and promote the shifting equilibria. The
combination of NHC catalysts and Brønsted acids provides a
good control in efficiently promoting the E/Z isomerization.

The initial study starts with the E-isomer enedial 1a
(Scheme 1). First, there was no product that could be
obtained after 24 h without any additives (Scheme 1, Entry 1).
After the reaction time was extended to 3 days, product 2a
(54% yield) could be clearly observed (Scheme 1, Entry 2).
Then, a catalytic amount (20 mol %) of 4-(trifluoromethyl)
benzoic acid (Acid-3) was explored, and the desired product
2a can be obtained with 13% yield after 12 h (Scheme 1, Entry
3). Furthermore, various Brønsted acids were defined as the
proton sources as well as oxidants (Acid-1 to 8). The desired
product 2a was disclosed in 83% isolated yield with THF as
solvent and K2CO3 as base under aminoindanol-derived
triazolium pre-NHC A (Scheme 1, Entry 6). Meanwhile,
product 2a also can be obtained with 59% yield when Acid-8
was used (Scheme 1, Entry 11). This result was encouraging
due to the high yield obtained under conventional conditions.
After that, achiral NHC catalysts (C and D) were also
investigated; the yield achieved was slightly higher when pre-
NHC C was used (Scheme 1, Entry 13). Subsequently, the
impact of bases and solvents was minimal (Scheme 1, Entries
15−20). Finally, the optimal reaction result was afforded, and
product 2a was provided in 89% isolated yield with solvent
DCM (Scheme 1, Entry 20).

Once the optimal reaction condition had been determined,
the substrate examples were explored (Scheme 2). Substituents

possessing both electron-withdrawing and electron-donating
groups could be installed on each (para-, meta-, or ortho-)
position of the phenyl group in aldehydes, with the
corresponding products afforded in good to excellent yields
(2a-2l). Our approach could be prepared on larger scales with
little impact on the yield of desired product 2a (400.5 mg, 2.5
mmol, 80% yield, 19 h). The structure of 2a was confirmed
through X-ray diffraction analysis. Meanwhile, a slightly lower
yield was observed when the 4-methylthio group appeared on

Figure 1. A. Representative E/Z isomerization reaction and E/Z-
isomer functional molecules; B. Functional molecules containing a
furanone moiety; C. Our proposed approach for the NHC-catalyzed
E/Z isomerization mode.

Scheme 1. Optimization of Reaction Conditionsa

aUnless otherwise specified, the reactions were conducted with 1a
(0.10 mmol), Additives (0.10 mmol), NHCs (0.02 mmol), bases
(0.03 mmol), and solvents (2.0 mL) at room temperature for 12 h.
bIsolated yield of 2a. cNo additive and reacted for 24 h. dNo additive
and reacted for over 3 days. eAcid-3 (0.02 mmol).
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the para-position compared with the model reaction (2m). A
multisubstituent reactant was also suitable for the construction
of a reaction system like dimethoxy, and the corresponding
product can afford excellent yield (2n). Replacement with
biphenyl and naphthyl groups afforded good yields (2o and
2p). A heterocyclic group, such as thiophene, was also used,
and the corresponding product can be obtained with good
yield (2q).

Ralfuranone A is an important functional molecule; the
synthetic transformations have been reported widely (Scheme
3).58−61 For example, White and co-workers reported that

compound 3 can be synthesized by the reduction reaction of
2a and DIBAL-H.58 Then, compound 3 can be epoxidized with
m-CPBA to form epoxide product 4 via the method reported
by Kleij and co-workers in 2016.59 Meanwhile, compound 3
can also react with trimethyl orthoformate to obtain product 5
under the catalysis of camphorsulfonic acid in the same
literature.59 Then, Song and co-workers reported that
compound 6 can be obtained by reacting 2a with
benzaldehyde in the presence of ethylenediamine.60 Sub-
sequently, 6 can be reacted with a solution of NH3 in MeOH
to give γ-hydroxybutyrolactam 7. After that, 7 can react with
indole to synthesize compound 8 via Brønsted acid catalysis as
Commeiras reported.61

In our previous work,62 the structure of 1a has been
confirmed by X-ray diffraction (CCDC: 2156768). Combined
with the 1H NMR results (Supporting Information), it
indicated that substrate 1a is a single E-isomer enedial (E/Z
> 99:1). It is worth noting that the desired ralfuranone
products 2 contained a Z-type C�C double bond, while it was
difficult for the C�C double bond in substrate 1a to rotate
directly and then continue the cyclization reaction. Therefore,
it should undergo an E → Z isomerization process in the
NHC-catalyzed reaction.

To investigate the process of E → Z isomerization in the
reaction, some control experiments were employed (Scheme
4a). First, the geometric thermal stability of substrate 1a was

investigated. E-Isomer 1a was dissolved in toluene and then
kept at room temperature and 80 °C for 4 h. The E/Z ratio of
1a was determinted by 1H NMR, and the results indicated that
the E/Z ratio after heating (E:Z > 99:1) was consistent with
that at room temperature (E:Z > 99:1). This proved that the E
→ Z isomerization of substrate 1a can not be achieved by
thermodynamic conversion.

To explore the mechanism of the overall reaction, the model
reaction was kept under dark conditions for 12 h, and product
2a was obtained with 86% yield (Scheme 4b). Then, the model
reaction was carried out at 0 °C, and extending the reaction
time to 20 h can also obtain the desired product 2a with high
yield. The above results indicated that the reactions did not

Scheme 2. Substrate Scopea

aReaction conditions as stated in Scheme 1, Entry 20; yields were
isolated yields after purification by column chromatography. bThe
reaction was carried out on a 2.5 mmol scale based on 1a; reaction
time: 19 h.

Scheme 3. Synthetic Transformations

Scheme 4. Control Experiments of Mechanism Study
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rely on the participation of light or heating. The background
reaction without NHC catalyst was also investigated; the
desired product could not be found after almost 3 days, and
the 1a recovery rate was 93%. It was worth noting that the E/Z
ratio of remaining 1a has not changed (E/Z > 99:1). In
addition, the E → Z isomerization was exlpored without
Brønsted acid. After 30 h, product 2a could be clearly
monitored by TLC. Then, the remaining 1a was isolated, and
the E/Z ratio changed to 16:1 determined by 1H NMR. These
results suggested that the E → Z isomerization occurred after
NHC reacted with substrate 1a. Meanwhile, the shifting
equilibria can not be moved forward effectively without
Brønsted acid. These two cascade processes ensured smooth
progress of overall NHC-catalyzed cycloaddition reactions.

To understand the mechanism of the new E/Z isomerization
catalytic mode, density functional theory (DFT) calculations
were performed (Scheme 5). (See SI for the computational
details). First, the C2�C3 double bond rotational barrier of
the substrate 1a was calculated; it was found that the energy
barrier was very high (ΔG⧧ = 44.4 kcal/mol), while it was
difficult to achieve the E → Z isomerization under mild
conditions. E-Isomer Breslow intermediate I was chosen as the
starting point, which was obtained by the reaction of NHC C
and enedial 1a. E-isomer Breslow intermediate I underwent E
→ Z isomerization around the C2�C3 double bond with a
greatly reduced energy barrier of only ΔG⧧ = 15.1 kcal/mol to
form intermediate INT1. This was much lower than the energy
barrier for direct rotation of the C2�C3 double bond in 1a.
Then, the unstable intermediate INT1 underwent a low-barrier
conformational reorganization (ΔG = 7.5 kcal/mol), where the
rotation of the C1−C2 single bond enabled the formation of an
intramolecular hydrogen bond between the enol and aldehyde
in Breslow intermediate II to greatly stabilize the conformation
(ΔG = −7.5 kcal/mol). This process was highly thermody-
namically favorable. Then, intermediate V can be generated via
the conformational adjustment and cycloaddition.63,64 Sub-
sequently, intermediate V will be protonated easily by the
Brønsted acid to generate the intermediate VI. A π-π stacking
between acid and substrate may stabilize TS6 and promote the
shifting equilibria. The overall Gibbs energy profile gave the
energetic span as −45.1 kcal/mol for the formation of the
desired product 2a (See SI for the complete Gibbs Profile).

Based on these mechanism studies, a possible mechanism
was proposed (Scheme 5c). Above all, the E-isomer substrate
1a was reacted with NHC C to generate the corresponding E-
isomer Breslow intermediate I smoothly, and the rotational
energy barrier of the C�C double bond in Breslow
intermediate I was significantly reduced. Therefore, Z-isomer
Breslow intermediate II was obtained. Moreover, an intra-
molecular hydrogen bond was formed in intermediate II,
which can largely stabilize the structure. The above process
completed the E → Z isomerization and laid the foundation of
overall reactions. Then, through a deprotonation reaction and
conformational adjustment, the intermediate V can be given.
Brønsted acid greatly increased the proton concentration,
which also can be used as an oxidant to accelerate the
conversion of intermediate V to VI through the shifting
equilibria. The whole redox-neutral reaction process achieved
the cascade reaction of contra-thermodynamic E → Z
isomerization and intramolecular esterification, and the
product 2a can be obtained with high yield.

In summary, we have reported a NHC-catalyzed and
Brønsted acid copromoted E → Z isomerization mode which

enables the synthesis of ralfuranones. The E → Z isomerization
via NHC catalyst and the lactone formation reaction promoted
by the Brønsted acid were the two key steps. E-Isomer Breslow
intermediates were generated through the reaction of E-isomer
enedials with the NHC catalyst. The rotational energy barrier
of the C�C double bond in the Breslow intermediate was
reduced and stabilized the structure via intramolecular
hydrogen bonding. Meanwhile, the Brønsted acid promoted

Scheme 5. Highly Efficient E/Z Isomerization Modea

aGibbs energies are computed at the IEFPCM (DCM)-M06-2X-D3/
def2-TZVPP//IEFPCM(DCM)-M06-2X-D3/def2-SVP level of
theory and are quoted in kcal/mol.
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the redox-neutral reaction. Through the E → Z isomerization
and shifting equilibria, ralfuranone containing a Z-type C�C
double bond was obtained. The desired products from our
reactions can be readily converted to various Z-type C�C
double bond containing compounds. The new efficient E → Z
isomerization mode, catalyzed by NHC and promoted by
Brønsted acid, provides a promising approach for synthesizing
single geometric isomers and can be further applied to the
development of new catalytic transformations.
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