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ABSTRACT: Enantiodivergent synthesis using a single catalyst or
catalysts with the same chiral scaffold has evolved as a particularly
attractive tool to access both enantiomers of chiral molecules.
Progress in this field mainly comes from the enantiodivergent
construction of central chirality as well as axial chirality. We report
herein a carbene-catalyzed base-controlled enantiodivergent syn-
thesis of saddle-shaped eight-membered lactones with inherent
chirality. With the use of the same carbene catalyst or the carbene
catalysts with the same chiral scaffold, both enantiomers of the
inherently chiral eight-membered lactones could be obtained under
different base conditions in high yields with good to excellent
enantioselectivities. The resulting inherently chiral eight-membered lactones allow further stereospecific derivatizations and exhibit
notable antibacterial activity. Preliminary DFT calculations unraveled the origins of this base-controlled enantiodivergent process.

■ INTRODUCTION
It has been well demonstrated that a pair of enantiomers can
differentially affect physiological processes,1 and the develop-
ment of efficient methods to obtain both enantiomers of chiral
molecules is one of the fundamental tasks in organic synthesis
and medicinal chemistry.2 Compared to the conventional
method of using both enantiomers of a chiral catalyst,
enantiodivergent synthesis using a single catalyst or ligand
scaffold has evolved as a particularly attractive tool.3 A lot of
tunable parameters such as achiral residues or ligand
substituents,4ab−c additives,4def−g temperature,4h solvent,4ijkl−m

reaction time,4n and others4o−pqrstuvwxyz have been recognized
to give unusual opposite enantio-control and enable enantio-
divergence. Generally, the scope of chiral molecules in
enantiodivergent synthesis has mostly been limited to central
chirality,4 with recent advancements in axial chirality.5 In
contrast, the enantiodivergent synthesis and application of
chiral molecules with other types of chiral elements remain
scarce and highly desirable.
Inherent chirality, first used by Böhmer et al. to define the

isomerism in calixarene frameworks,6 is different from
conventional central, axial, planar, helical chirality, etc.7

Inherently chiral molecules play an important role in chiral
sensing and asymmetric synthesis8 due to their unique and
rigid chiral scaffold, which thus pique the interests of chemists
in the enantioselective synthesis of such type of chiral
compounds. In addition to the asymmetric synthesis of
inherently chiral macromolecules such as calix[4]arenes as

reported by McKervey,9a Wang and Tong,9bc−d Cai,9e Yang,9f

Chen,9g and Liu9hi−j and prism-like cages as reported by
Wang,9k dominant research has focused on the synthesis of
inherently chiral molecules with medium-sized ring systems
(Figure 1a).10,11 For example, Shibata,10a Liu,10b,c and Zhu10d

reported the enantioselective synthesis of 7-membered rings
with inherent chirality, respectively. Moreover, enantioselective
synthesis of inherently chiral 8-membered cyclic compounds
has received great attention, since Shibata and co-workers
reported the first catalytic enantioselective synthesis of chiral
eight-membered tetraphenylenes through Rh-catalyzed cyclo-
additions of two triynes.11a For example, the Zhu group11b,c

and Yang group11d,e accomplished the highly enantioselective
synthesis of saddle-shaped aza analogues of tetraphenylene. In
2024, the asymmetric synthesis of saddle-shaped eight-
membered oxa-analogues through high-order annulations was
reported by the Yan group11f and Jiang group,11g respectively.
In addition, Liao disclosed the enantioselective synthesis of
chiral eight-membered lactones via an axial-to-inherent
chirality conversion strategy (Figure 1b).11h
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Following our ongoing interest in the catalytic asymmetric
construction of medium-sized ring systems,12ab−c herein we
reported a carbene13-catalyzed base-controlled enantiodiver-
gent synthesis of inherently chiral saddle-shaped eight-
membered lactones 2 via an intramolecular esterification of
the triaryl aldehydes 1 (Figure 1c). With the use of the same
carbene catalyst or the carbene catalysts with the same chiral
scaffold, both enantiomers of the inherently chiral eight-
membered lactones could be accessed in high yields with good
to excellent enantioselectivities. Compared to Liao’s11h work,
the inherently chiral products 2 obtained in our work have a
lower rotational barrier, since there is no substituted group
around the axis for each aryl of products 2 or triaryl aldehydes
1. In addition, the free rotation of triaryl aldehydes 1 allows for
the formation of multiple configurations in the transition states

for the cyclization step; therefore, the enantioselectivity is
likely to be controlled by other conditions, such as bases. In
this work, DFT calculations demonstrated that NaOAc and
DBU have dramatically different interactions with an acyl
azolium intermediate I in the transition state of the cyclization
step and thus achieved enantiodivergent synthesis of the chiral
products 2.

■ RESULTS AND DISCUSSION
We initiated our studies using 1a as the model substrates with
tetra-tert-butyldiphenyl-quinone (DQ)14 as an oxidant to
search for suitable conditions, with key results summarized
in Table 1. The aminoindanol-derived precatalyst bearing an
N-mesityl substituent (A)15 resulted in the formation of a trace

Figure 1. Background introduction and our strategy for synthesizing inherently chiral saddle-shaped eight-membered lactones.
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amount of the desired product 2a (Table 1, entry 1).
Gratifyingly, replacing the N-mesityl unit of A with an
electron-deficient trichlorophenyl group (to get catalyst B)16

gave the product in a dramatically improved yield (99% yield)
and equally excellent er value (entry 2). When the precatalyst
(C)17 with a more electron-deficient N-pentafluorophenyl
substitute was examined, the desired product was isolated in
lower enantioselectivity (entry 3). The introduction of a
bromine atom (D)18 on the Indane moiety gave the product
2a in comparable results as catalyst B (entry 4). The
phenylalanine-derived catalyst E provided only moderate
enantioselectivity (entry 5). Surprisingly, screening of bases
(entries 6−11) revealed that the bases have a dramatic effect
on the enantiocontrol. For example, the use of the strong base
1,8-diazabicyclo[5.4.0]undec-7-en (DBU) gave the opposite
enantiomeric ratio (entry 6). Variation of the amount of DBU
did not lead to improved results (entries 12−13). Sub-
sequently, by evaluating the effects of typical additives, such as
triflate salts, phenylboronic acid, we were able to achieve an
optimal reaction condition with NHC B as the catalyst and
DBU as the base when the reaction was performed at 0 °C in
DCM for 24 h, leading to the desired product (ent)-2a with

99% isolated yield and an excellent enantioselectivity (7:93 er,
entry 14). Furthermore, the use of carbene catalyst A, with the
same chiral scaffold as carbene catalyst B, afforded the product
(ent)-2 in 99% yield and 3:97 er (entry 15). The replacement
of solvent DCM with DMF gave the same results in terms of
the yield or enantioselectivity (entry 16).
With acceptable optimized reaction conditions in hand

(Table 1, entries 2 and 14−16), we next investigated the scope
of the NHC-catalyzed base-controlled enantiodivergent
cyclization reaction and the results are shown in Scheme 1.
We first investigated the effect of various R1 substituents on the
reaction. For aldehyde moieties with aromatic rings bearing
electron-donating groups (such as Me and MeO) or electron-
withdrawing groups (such as F and Cl), all the reactions
proceeded smoothly to generate both enantiomers of the
desired products (2a−2i) in acceptable to excellent yields
(82−99% yields for the 2a−2i and 76−99% yields for (ent)-
2a−2i) and enantiomeric ratios (91:9−97:3 er for the 2a−2i
and 10:90−4:96 er for (ent)-2a−2i). Aldehyde moieties
bearing 1,3-benzodioxole also worked efficiently as well,
affording the corresponding product 2j with good outcomes
(88% yield and 95:5 er for the 2j, and 95% yield and 7:93 er
for the (ent)-2j). Next, a series of R2 groups on the benzene
ring were examined (2k−2q). A variety of substituents at
different positions of the aromatic ring were well tolerated,
generating the corresponding products 2k−2q (81−99% yields
and 90:10 er for the 2k−2q, and 82−99% yields and 10:90−
6:94 er for (ent)-2k−2q). The absolute configuration of 2q
was confirmed by X-ray analysis.19 Furthermore, we examined
the influence of the R3 group for the reaction (2r−2v). By
introducing a methyl group at the 3-position of the benzene
ring, product 2r could be isolated in high yields (90% yield for
the 2r and 94% yield for (ent)-2r) and good enantioselectiv-
ities (96:4 er for the 2r and 9:91 er for (ent)-2r). Substituents
with different electronic properties at the 4-position of the
benzene ring were all amenable in this reaction, giving the
product in high yields with excellent enantioselectivities (2s−
2v). Substrates with a fused aromatic ring underwent this
reaction smoothly to form the corresponding products 2w and
2x, and the latter showed a better enantioselectivity than the
former. Introducing two substituents on different benzene
rings almost has no effect on the reaction (2y−2ag). Notably,
substrates with a highly symmetric structure also can be used
in this reaction, leading to the formation of both enantiomers
of C2-symmetric chiral product 2ah in moderate to good yields
and good to excellent enantioselectivities (40% yield and 94:6
er for the 2ah, and 81% yield and 1:99 er for (ent)-2ah).
To understand the molecular origins underpinning the base-

controlled enantiodivergence, we performed DFT studies at
the SMD(DCM)-M06-2X/def2-TZVP//M06-2X/def2-SVP
level of theory to understand the enantiodetermining step
(see Supporting Information). Conformational sampling of the
acyl azolium intermediate (see Supporting Information)
indicates that the rotation about the C−C axial bonds is
facile, allowing different conformations to easily interconvert
and exist in a thermal equilibrium. With detailed conforma-
tional sampling, we located the lowest barrier transition states
(TSs) leading to 2a and (ent)-2a under NaOAc and a DBU
base (Figures 2 and 3). The transition state occurs as the base
performs deprotonation of the hydroxyl group on the phenol
group, allowing the phenoxide oxygen to attack the carbonyl
carbon of the acyl azolium intermediate to affect the ring
closure.

Table 1. Optimization of the Reaction Conditionsa

entry NHC base solvent yield [%][b] er[c]

1 A NaOAc DCM trace
2 B NaOAc DCM 99 97:3
3 C NaOAc DCM 99 94:6
4 D NaOAc DCM 99 97:3
5 E NaOAc DCM 91 81:19
6 B DBU DCM 91 16:84
7 B DIPEA DCM 54 23:77
8 B LiOH DCM 99 21:79
9 B DMAP DCM 90 93:7
10 B Cs2CO3 DCM 80 47:53
11 B DABCO DCM 40 83:17
12d B DBU DCM 70 17:83
13e B DBU DCM 60 26:74
14f B DBU DCM 99 7:93
15 A DBU DCM 99 3:97
16 A DBU DMF 99 3:97

aReaction conditions: 1a (0.1 mmol), base (1.0 equiv), NHC·HBF4
(20 mol %), 4Å MS (100 mg), and DQ (1.0 equiv) in solvent (1.5
mL) at 0 °C. bIsolated yield. cEnantiomeric ratio of 2a was
determined via HPLC on a chiral stationary phase. dDBU (0.5
equiv). eDBU (5.0 equiv). f0.5 equiv of 4-Nitrophenylboronic acid
and 0.5 equiv of Bismuth(III) trifluoromethanesulfonate were used.
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Scheme 1. [a] Reaction Conditions as Stated in Table 1, Entry 2; [b] Reaction Conditions as Stated in Table 1, Entry 14; [c]

Reaction Conditions as Stated in Table 1, Entry 15; [d] Reaction Conditions as Stated in Table 1, Entry 16; [e] Single
Diastereoisomer
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Under the NaOAc base, the TS leading to the major product
2a, TS_NaOAc_major, is lower than the TS leading to the
minor product (ent)-2a, TS_NaOAc_minor, by 1.2 kcal/mol
(Figure 2). This translates to an er ratio of 90:10 using a
simple transition state theory, in reasonably good agreement
with the experimentally observed er ratio of 97:3. The analysis
of frontier molecular orbital (HOMO and LUMO) non-

covalent interaction (NCI) plots (see Supporting Information,
Figure S3) suggests that the FMOs are similar for both cases
and that TS_NaOAc_major may benefit from more favorable
noncovalent interactions, making the barrier lower than
TS_NaOAc_minor. This has been confirmed by distortion
interaction analysis, which shows that although the distortion
energy is 1.0 kcal/mol higher in TS_NaOAc_major, the
interaction energy is more favorable, by 2.9 kcal/mol than in
TS_NaOAc_minor (Table S6).
Under the DBU base, on the other hand, the lowest barrier

TS structure leading to the major product (ent)-2a, via
TS_DBU_major, is lower than the TS leading to the minor
product 2a, TS_DBU_minor, by 0.8 kcal/mol (Figure 3). This
translates to an er ratio of 81:19, in good agreement with the
experimentally observed er ratio of 84:16 (Table 1, entry 6).
The FMOs are similar for both cases (Supporting Information,
Figure S5). Distortion interaction analysis suggests that
TS_DBU_major benefits from a lower distortion energy (by
14.5 kcal/mol) although it has a less favorable interaction
energy (by 13.9 kcal/mol) (Table S6). We note that the
differences in the noncovalent interaction network in the
presence of different bases contribute to the divergent
enantioselectivity.
To demonstrate the practicality of our method, we first

conducted the desymmetrization reaction of compound 3 in
the presence of 10 mol % of NHC precatalyst A, which
efficiently yielded the eight-membered lactone 4 in 99% yield
with a 1:99 er. Product 4 was found to be highly resistant to
racemization (no racemization observed at 140 °C in
mesitylene for 4 h), with a computed rotational barrier of
34.9 kcal/mol (Supporting Information, Figure S7). The
product 4 was amenable in various transformations (Scheme
2a). For instance, the aldehyde group of 4 can react with 1,3-
ethanedithiol under acidic conditions to give product 5 in a
high yield and enantioselectivity. The Wittig reaction of 4
using the stable ester-bearing ylide resulted in the formation of
the target olefin derivative 6 in 99% yield, 3.4:1 E:Z ratio, and
1:99 er. Condensation of the aldehyde group with NH2OH
generated oxime 7 in 75% yield and 1:99 er. Oxidation of the
aldehyde group could produce chiral carboxylic acid 8 in good
yields. The palladium-catalyzed C−H olefination could afford
product 9 in 80% yield and 1:99 er. Reduction of 4 in DCM
with HBpin afforded product 10 in 90% yield with retention of
the product er value. Alkenes derived from bioactive molecules,
such as Cholesterol, can react with lactone 4 to offer the
corresponding product 11 in moderate to high yields with high
stereoselectivity. Product 2a can achieve the conversion from
inherent chirality to central chirality (13) through a sequence
of Tebbe olefination, followed by Pd-catalyzed hydrogenation.
Inspired by the diverse biological activities of lactones, we

initiated preliminary investigations into the antimicrobial
properties of our products to develop potent antibacterial
agrochemicals for crop protection (Scheme 2b). Most
evaluated compounds demonstrated significant inhibitory
activity against Xanthomonas oryzae pv oryzae (Xoo), the
causative agent of bacterial leaf blight (BLB) disease, which
poses a substantial risk to rice cultivation. Specifically, the
enantio-enriched eight-membered lactone (ent)-2c exhibited a
remarkable rate of 69.82% against Xoo at a concentration of 50
μg/mL, exceeding the positive controls, thiodiazole-copper
(TC) and bismerthiazol (BT). Additionally, the synthesized
lactone products demonstrated notable inhibitory effectiveness
against Xanthomonas axonopodis pv citri (Xac), a bacterium

Figure 2. DFT-optimized transition state structures leading to the
major and minor products under the NaOAc base. Key bond
distances are given in Å.

Figure 3. DFT-optimized transition state structures leading to the
major and minor products under the DBU base. Key bond distances
are given in Å.
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responsible for inducing lesions on plant surfaces, which can
lead to plant necrosis. In this context, compound (ent)-2g
exhibited an inhibitory activity of 55.63%, significantly
exceeding that of the positive controls, which exhibited

activities of 19.04% for TC and 20.34% for BT. In contrast,
(rac)-2c and (ent)-2z exhibited lower antibacterial activities.
This suggests that the inherent chiralities of the lactone
structures are likely to play a significant role in their biological

Scheme 2. Synthetic Applications and Biological Activity Test
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efficacy. Notably, 14 chiral products synthesized via our
methodology demonstrated markedly superior antibacterial
activities, establishing them as promising candidates for the
development of novel pesticide formulations.

■ CONCLUSIONS
In summary, we have developed a carbene-catalyzed
enantiodivergent intramolecular cyclization reaction for the
synthesis of saddle-shaped, eight-membered lactones with
inherent chirality. Both enantiomers of the inherently chiral
eight-membered lactones could be obtained in high yields with
good to excellent enantioselectivities by switching the bases in
the presence of the same carbene catalyst or the carbene
catalysts with the same chiral scaffold. Further stereospecific
transformations and an antibacterial activity test of the
inherently chiral eight-membered lactone products demon-
strated the synthetic utility of this method. Preliminary DFT
calculations indicated that the bases have dramatically different
interactions with the acyl azolium intermediate in the
transition state of the cyclization step, thus effecting the
enantiodivergent synthesis of the chiral products.
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