

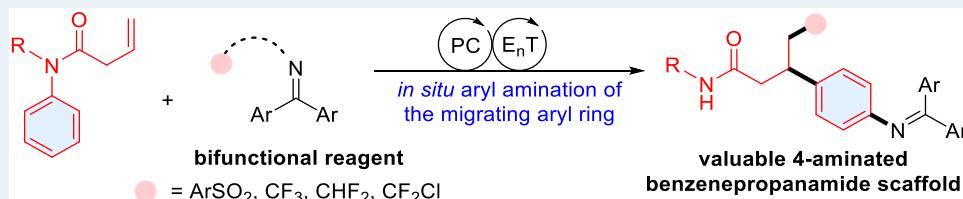
# Photocatalytic *In Situ* Amination of the Migrating Aryl Group: Rapid Access to 4-Aminated Benzenepropanamides

Dongmei Chen, Ting Tu, Tianhui Liao, Donghan Liu, Shi-Chao Ren,\* and Yonggui Robin Chi\*



Cite This: *ACS Catal.* 2025, 15, 21066–21076




Read Online

ACCESS |

Metrics & More

Article Recommendations

Supporting Information



**ABSTRACT:** Aryl migration-induced difunctionalization of alkenes is a fascinating strategy for increasing the molecular complexity via the simultaneous formation of two chemical bonds across the C–C double bond. Despite the significant advances in this area, the *in situ* functionalization of the migrating aryl ring remains elusive due to the incompatibility between the conventional arene C–H functionalization strategy and the aryl migration process. Herein, we disclose the photocatalytic *in situ* amination of the migrating aryl ring in which an aryl ring is aminated and migrated within a single step, providing rapid access to valuable 4-aminoated benzenepropanamide scaffolds. Such transformations enable the formation of an additional chemical bond on the migrating aryl ring beyond those two formed on the alkene carbons, significantly increasing the flexibility of the aryl migration strategy and improving the migration efficiency for the aminated aryl ring. The energy transfer catalytic cycle between the photosensitizer and the bifunctional reagents plays a pivotal role in combining the aryl migration process with the emerging radical-based arene remote C–H amination step. Experimental mechanistic studies support the proposed reaction pathway. The power of this protocol was demonstrated by the functionalization of pharmaceutically relevant molecules, the efficient synthesis of bioactive molecule analogs, and antibacterial activity investigations.

**KEYWORDS:** aryl migration, radical amination, alkene difunctionalization, 4-aminoated benzenepropanamide, antibacterial activity

## INTRODUCTION

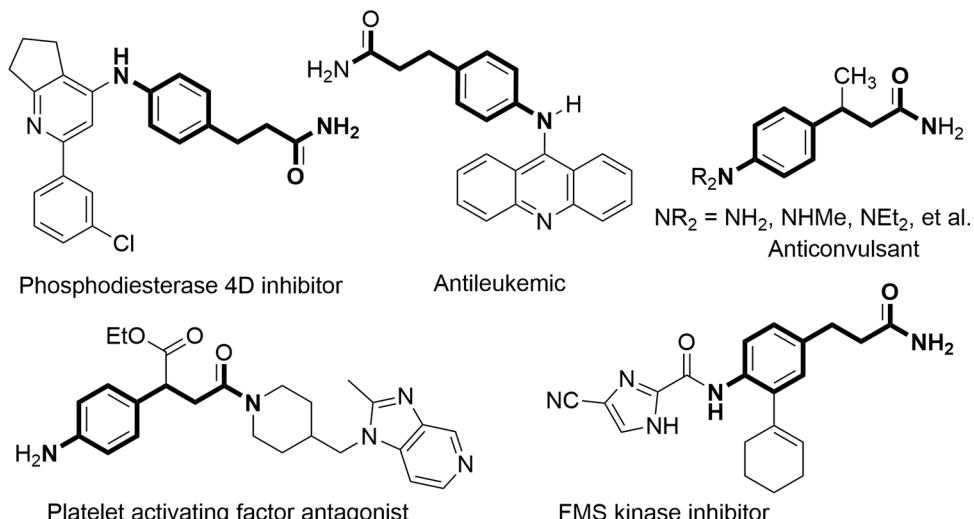
The 4-aminoated benzenepropanamide skeleton was designed as a core pharmacophore exhibiting antitumor,<sup>1</sup> antileukemic,<sup>2</sup> and antivirus activities, such as dengue and West Nile virus.<sup>3</sup> For instance, several representative 4-aminoated benzenepropanamide moiety-containing molecules with diverse bioactivities are shown in Figure 1a.<sup>4–7</sup> Thus, the development of mild and reliable synthetic methods for the efficient construction of such skeletons is highly sought after.

Aryl migration-mediated difunctionalization<sup>8–17</sup> of alkenes represents one of the most straightforward strategies for rapid access to benzenepropanamide skeletons from commodity alkenes (Figure 1b, left).<sup>18–21</sup> The aryl migrations generally start from the reaction of preprepared aryl group-tethered alkenes with *in situ* generated radical species, followed by an aryl migration process, enabling the migration of the preinstalled aryl group. In terms of certain desired aryl groups, the preinstallation process can sometimes be synthetically complex or prohibitively difficult, which restricts the generality of this strategy. Significant advances have been made to increase the flexibility of this strategy and improve the migration efficiency of a specific aryl group.<sup>22–28</sup> For instance, Stephenson and co-workers disclosed the photocatalytic

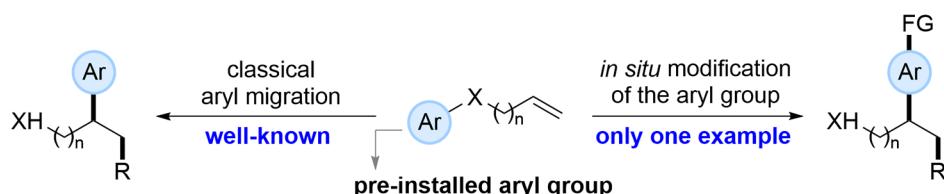
aminoarylation of alkenes, enabling the efficient installation of various aryl groups to the alkenes by simply selecting different arylsulfonylacetamides as bifunctional reagents.<sup>26,29</sup> Zhu and co-workers reported the aryl difluoromethylation of alkenes via a novel docking-migration strategy, in which the migrating aryl group is involved in the dual-function reagent.<sup>23,24,28</sup> Later, Studer et al. disclosed an unprecedented B-to-C aryl migration strategy, enabling the flexible variation of the migrating aryl group by an *in situ* tethering strategy.<sup>27</sup> While these seminal strategies significantly improve the migration efficiency of a specific aryl group, the requirement for prepreparation of the bifunctional reagents and the utility of strong basic and nucleophilic aryl lithium reagents limit their applications to some degree.

Direct arene C–H functionalization offers the most efficient strategy for constructing substituted aromatic compounds, and

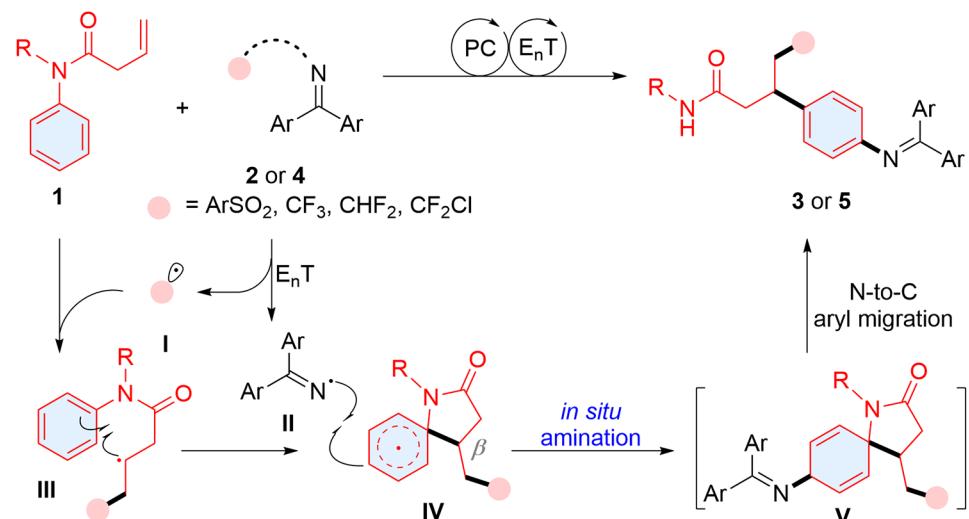
Received: September 17, 2025


Revised: November 25, 2025

Accepted: December 1, 2025


Published: December 9, 2025

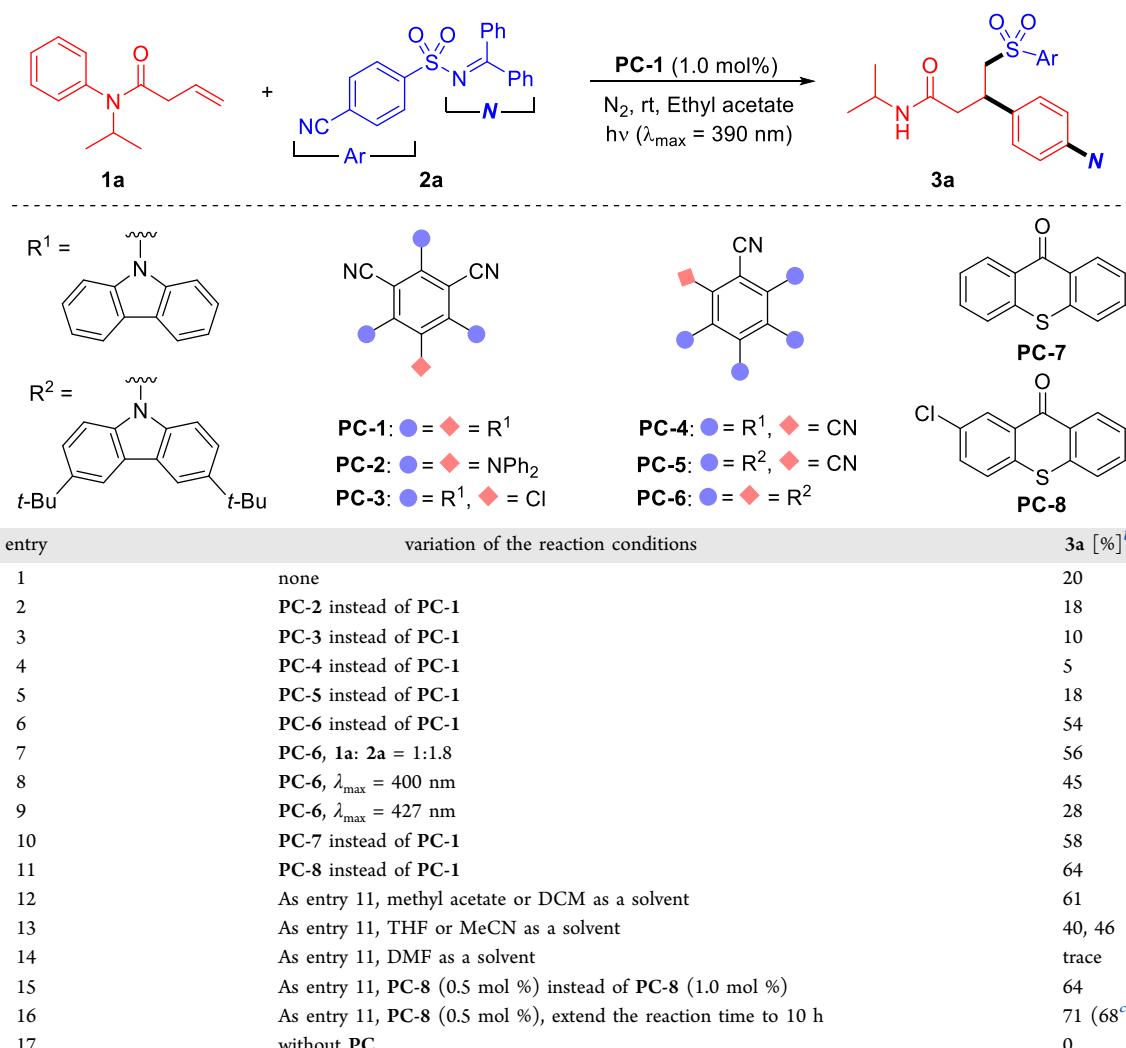



**a. Biologically active molecules containing 3-(4-aminophenyl)propionamide moiety**



**b. Advances and limitations of aryl migration mediated-alkene difunctionalization**




**c. This work: Aminated Ar installation via *in situ* amination of the migrating Ar**

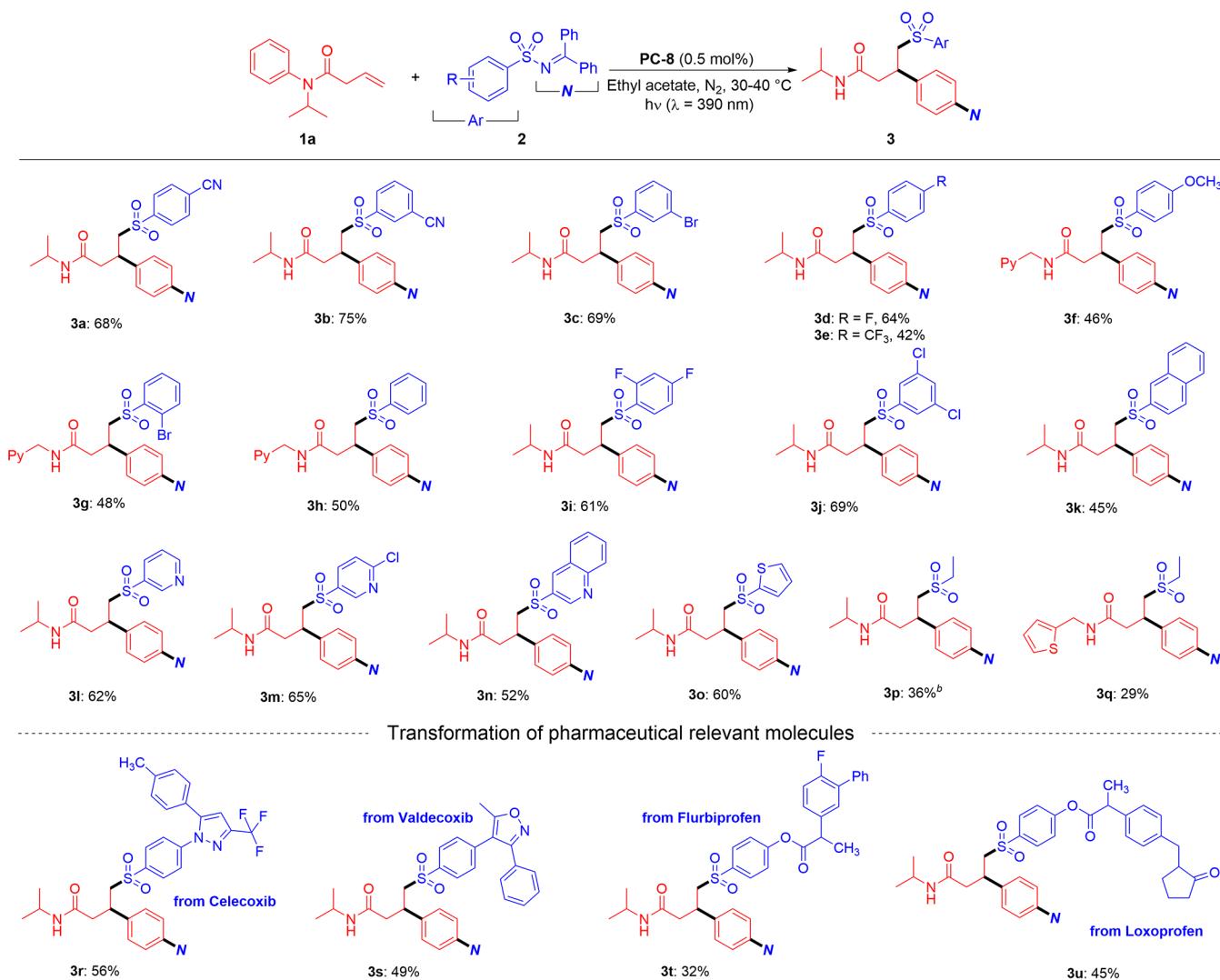


**Figure 1.** Backgrounds and design of installation of aminated aryl rings via *in situ* amination of the migrating aryl rings.

substantial advances have been achieved.<sup>30</sup> Nonetheless, the *in situ* functionalization of a migrating aryl group during the migration process remains elusive, presumably due to the incompatibility between the conventional metal-catalyzed arene C–H functionalization and the radical-based aryl migration process (Figure 1b, right). Most recently, our group and Li group independently developed a conceptually new radical-mediated arene remote C–H functionalization strategy, which has been successfully applied in *para*-selective arene amination<sup>31</sup> and acylation.<sup>32,33</sup> This emerging radical-based arene C–H amination strategy may be compatible with the aryl migration process, providing an opportunity to realize the amination of the migrating aryl ring.<sup>34</sup> Herein, we report a

photocatalytic aryl migration strategy for the efficient synthesis of 4-aminated benzene propanamide skeletons via *in situ* amination of the migrating aryl group (Figure 1c). The simultaneous photocatalytic generation of two radical species with distinct reactivity, a persistent one and a transient one, plays a pivotal role in combining the aryl migration process with the arene remote C–H amination step. The transient radical species (I) and the persistent iminal radical (II)<sup>35–42</sup> separately dominate the radical addition with the C–C double bond (1 to III) and the subsequent *in situ* amination process (IV to V). The cleavage of the inert C–N bond finally finishes the migration of the 4-aminated aryl ring, delivering the valuable 4-aminated benzene propanamide skeleton. The

Table 1. Optimization of the Reaction Conditions<sup>a</sup>

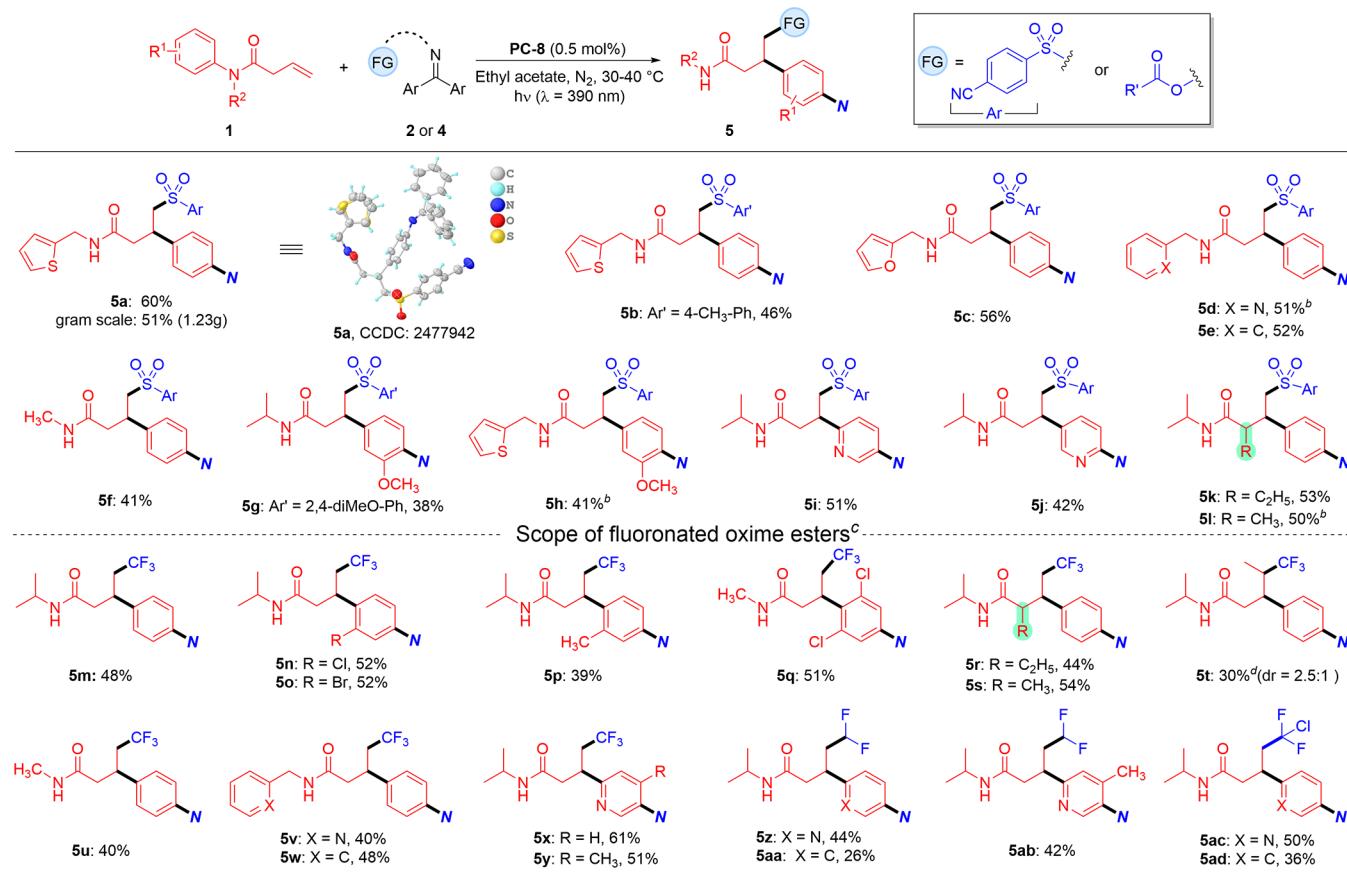

<sup>a</sup>Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), **PC** (1.0 mol %), and solvent (2 mL) were irradiated in 390 nm LED light for 6 h under  $\text{N}_2$  atmosphere, 30–40 °C. <sup>b</sup>Yield determined by NMR using 1,1,2,2-tetrachloroethane as the internal standard. <sup>c</sup>Isolated yield.

reaction features the *in situ* amination of the migrating aryl ring, circumventing the tedious synthetic route for preparing substrates that bear an amino group at the *para*-position. The structure of the obtained benzene propanamides can be varied by simply selecting different bifunctional reagents. The reaction was successfully applied in the functionalization of pharmaceutically relevant molecules, the efficient divergent synthesis of bioactive molecule analogs, and antibacterial activity investigations. Experimental studies support the proposed reaction pathway.

## RESULTS AND DISCUSSION

**Reaction Optimization.** To pursue our hypothesis, a suitable bifunctional reagent that enables the generation of both a transient radical (participation in the radical addition step, **I** to **III**) and a persistent nitrogen radical species (dominating the radical recombination step, **IV** to **V**) should be selected. Sulfonyl imines have emerged as powerful reagents for simultaneously generating sulfonyl radicals and iminyl radicals via the homolysis of the weak N–S bond ( $\approx 70 \text{ kcal/mol}$ ) under photocatalytic energy transfer (EnT) process.<sup>43–47</sup> Thus, sulfonyl imine **2a** (1.5 equiv) was selected as the model

bifunctional reagent to react with a C–C double bond-tethered *N*-phenyl amide **1a** (1.0 equiv). Preliminary attempt using 4CzIPN (1 mol %) as a photosensitizer, together with ethyl acetate as the solvent, under light irradiation ( $\lambda_{\text{max}} = 390 \text{ nm}$ ) affords the desired benzene propanamide **3a** in 20% yield (Table 1, entry 1). Subsequent examination of several cyanobenzene-derived photosensitizers such as **PC-2**–**PC-5** failed to improve the reaction yield (entries 2–5). Interestingly, pentacarbazole cyanobenzene **PC-6** exhibited high catalytic efficiency, with **3a** obtained in 54% yield. Increasing the amount of **2a** to 1.8 equiv provides a slightly improved yield (entry 7). Lights with longer wavelengths lead to dropped yields (entries 8–9). Considering the high triplet state energy of thioxanthone (65.5 kcal/mol)<sup>48</sup> and its capability to act as an efficient energy transfer agent, thioxanthones **PC-7** and **PC-8** were used to catalyze the current transformation. To our delight, the use of 2-chlorothioxanthone **PC-8** as the photosensitizer provides a 64% yield of **3a**. Solvent screening demonstrated that both methyl acetate and DCM gave comparable yields to ethyl acetate (entry 12), THF and MeCN led to remarkable drops in yields (entry 13), and strong polar solvent DMF is unsuitable as a reaction mediator (entry 14). A reduced catalyst loading (0.5 mol %) gave maintainable


Table 2. Substrate Scope of Bifunctional Reagent Sulfonyl Imines<sup>a</sup>

<sup>a</sup>Reaction conditions: **1** (0.1 mmol), **2** (0.15 mmol), PC-8 (0.5 mol %), and EtOAc (2 mL) were irradiated in 390 nm LED light for 10 h under  $\text{N}_2$  atmosphere, 30–40 °C. <sup>b</sup>Reaction is conducted in the presence of PC-8 (5 mol %) for 15 h.

yield (entry 15). Extending the reaction time from 6 to 10 h further improves the yield to 71%, with the corresponding isolated yield being 68% (entry 16). At last, the control experiment demonstrated that the photosensitizer was crucial for this reaction, as the transformation was suppressed entirely without the presence of the PC-8 (entry 17).

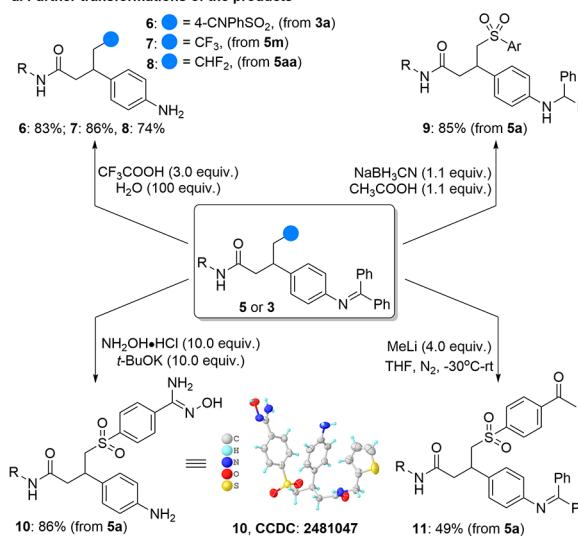
**Substrate Scope.** After identifying the optimal reaction conditions, we turned our attention to investigating the generality of the current photocatalytic amination/migration transformations. The scope of the sulfonyl imine **2** was first investigated with amide **1a** as the model reaction partner (Table 2). The reactions exhibit broad functional group tolerance for the sulfonyl imines regardless of the electronic effect. For instance, electron-withdrawing groups such as cyano (**3a**), fluorine atom (**3d**), and trifluoromethyl (**3e**) at the *para*-position of the sulfonyl imines proceeded with the reaction smoothly, affording the corresponding aminated benzene propanamides in moderate to good yields. Cyano and bromine at the *meta*-position were well tolerated, giving **3b** and **3c** in 75 and 69% yields, respectively. Strong electron-donation methoxyl group at the *para*-position leads to only slight

erosion of the yield, with **3f** isolated in 46% yield. The steric effect on the sulfonyl group has little impact on the reaction outcome. For instance, sulfonyl imine bearing a bromine atom adjacent to the sulfonyl radical center proceeded the reaction smoothly, with the product **3g** obtained in a slightly decreased yield. Dihalogenated sulfonyl imines such as 2,4-difluoro and 3,5-dichloro sulfonyl imines were successfully rearranged to the corresponding benzene propanamides **3i** and **3j** in 61 and 69% yields, respectively. The halogen atoms in these molecules provide opportunities for further functionalization reactions. Heterocycles are a ubiquitous feature of pharmaceuticals and agrochemicals, and their introduction into organic molecules therefore attracts significant attention.<sup>49,50</sup> Fortunately, heteroaromatic sulfonyl imines, including those bearing pyridine ring (**3l** & **3m**), quinoline ring (**3n**), and thiophene ring (**3o**), were well tolerated, with the corresponding heterocycle containing targets obtained in 52–65% yields, respectively. The aliphatic sulfonyl radicals generally undergo a quick desulfurization process to generate alkyl radical species, posing a significant challenge for the radical addition of aliphatic sulfonyl radicals to alkenes. Nonetheless, the ethanesulfonyl imine was a

Table 3. Substrate Scope of the Amides and Oxime Esters<sup>a</sup>

<sup>a</sup>Reaction conditions: 1 (0.1 mmol), 2 (0.15 mmol), PC-8 (0.5 mol %), and EtOAc (2 mL) were irradiated in 390 nm LED light for 10 h under N<sub>2</sub> atmosphere, 30~40 °C. <sup>b</sup>Reaction is conducted in the presence of PC-8 (5 mol %) for 15 h. <sup>c</sup>Reaction conditions: 1 (0.1 mmol), 4 (0.18 mmol), PC-8 (5 mol %), and EtOAc (2 mL) were irradiated in 390 nm LED light for 8 h under N<sub>2</sub> atmosphere. <sup>d</sup>Reaction conditions: 1 (0.1 mmol), 4 (0.2 mmol), PC-8 (10 mol %), and EtOAc (2 mL) were irradiated in 390 nm LED light for 6 h under N<sub>2</sub> atmosphere.

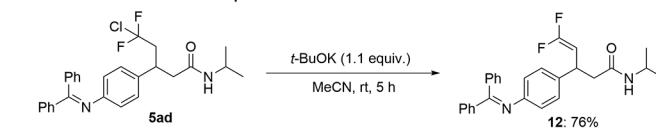
competent bifunctional reagent for the current transformations, albeit with remarkably dropped yields (3p & 3q).


To test the practical utility of our strategy, several pharmaceutical-relevant molecules were submitted to the standard conditions. Specifically, the sulfonyl amine moiety-containing drugs Celecoxib and Valdecoxib were converted into the sulfonyl imines and submitted to our reactions, affording the corresponding products in 56% (3r) and 49% (3s) yields, respectively. Indeed, the current reactions enable the deaminative tethering of the sulfonamides to the valuable 4-aminated benzene propanamides, providing quick access to prepare related hybrid drugs. Flurbiprofen- and Loxoprofen-derived sulfonyl imines were also competent substrates, albeit with slightly low yields (3t & 3u).

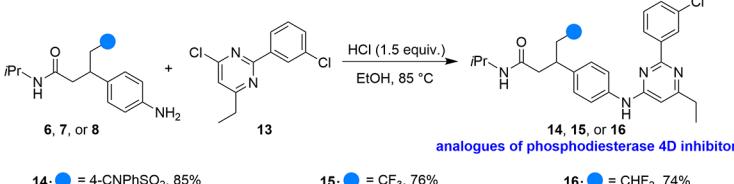
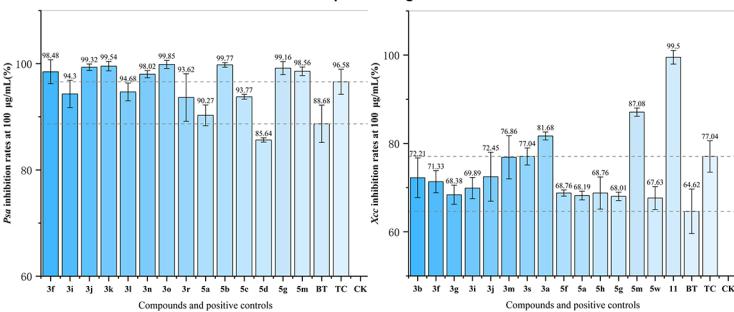
We subsequently explored the generality of the current reaction for  $\beta,\gamma$ -unsaturated carboxylic amide 1 with sulfonyl imine 2a as the model reaction partners (Table 3). Initially, the relatively bulky isopropyl group was believed to facilitate amide 1a adopting a geometrically favorable conformation for the radical cyclization step. Thus, the generality of other nitrogen protecting groups ( $R^2$ ) was first investigated. Switching the isopropyl to a thiophen-2-ylmethyl group resulted in the formation of 5a and 5b in 60% and 46% yields, respectively. The structure of 5a was further confirmed by the X-ray diffraction analysis of its single crystal (CCDC: 2477942). To demonstrate the potential application of the current reactions,

the production of 5a was scaled up to a gram scale, with 5a isolated in comparable yield. Other protecting groups, such as furan-2-ylmethyl (5c), pyridin-2-ylmethyl (5d), benzyl (5e), and methyl (5f), are all tolerated, with the corresponding products obtained in acceptable to moderate yields. Appropriately increasing the catalyst loading and extending the reaction time can slightly improve the yield of 5d (51%). The substituent on the N-protecting phenyl ring exhibits a significant influence on the current reaction regardless of its electronic effect. Among many of the tested *ortho*- or *meta*-substituents, only the aryl group bearing a methoxyl group at the *meta*-position gave acceptable yields (5g and 5h). This phenomenon may be attributed to the steric and electronic influences of the substituents on the cyclization and the subsequent radical recombination steps. The reaction was successfully applied to the migration and functionalization of a pyridine ring. Interestingly, two disubstituted pyridine compounds with reversed substituent positions (5i and 5j) can be obtained by using different starting materials. Substituent at the  $\alpha$  position of the  $\beta,\gamma$ -unsaturated amide has little influence on the reaction, as the ethyl- and methyl-containing products (5k and 5l) are obtained in 53 and 50% yields, respectively. The introduction of fluoroalkyl motifs into target organic molecules has long been a topic of interest in synthetic, medical, and materials science due to the unique properties induced by fluorine and fluoroalkyl.<sup>51,52</sup> Thus, we

## Scheme 1. Practical Applications of the Current Reaction


## a. Further transformations of the products



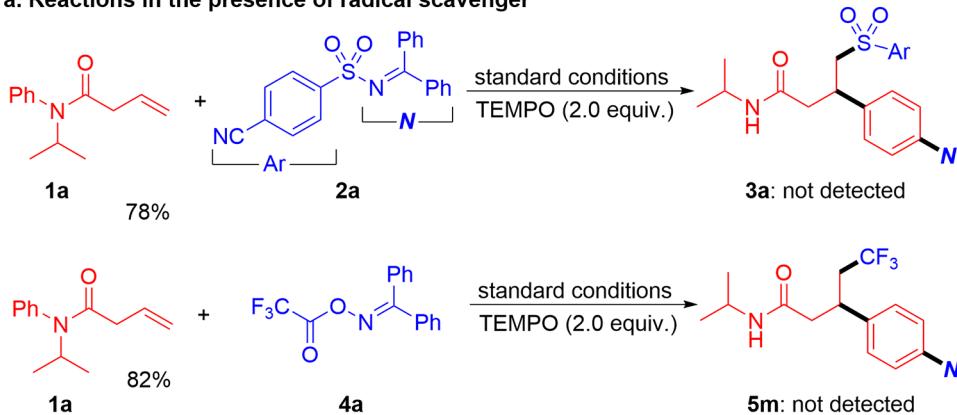
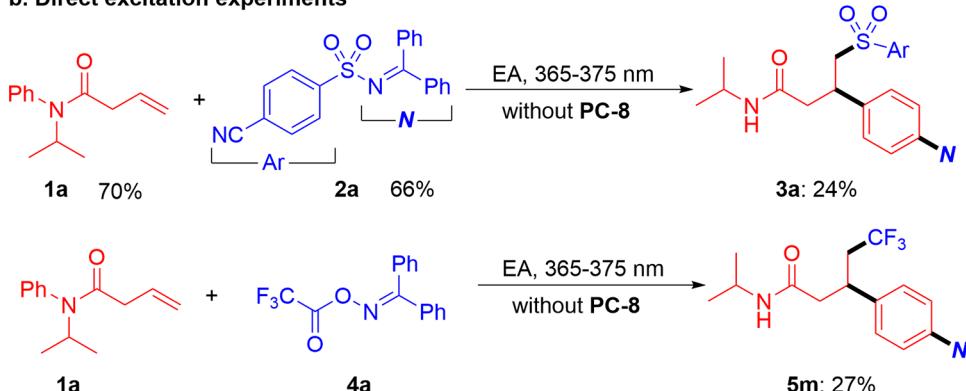
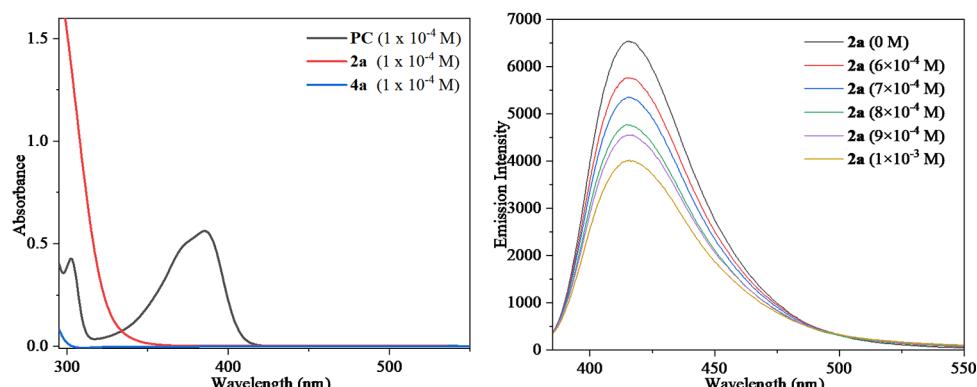


## b. One-pot, two-step procedure for synthesis of 6



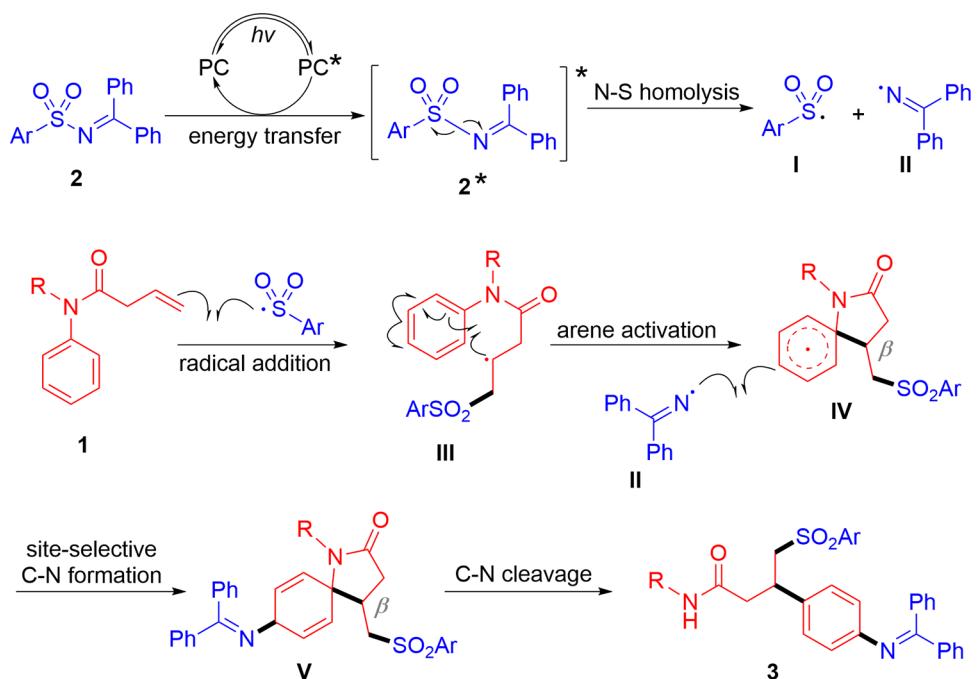
## c. Further transformations of the products



## d. Synthesis of potentially bioactive molecules




e. In vitro antibacterial activities of the obtained products against *Psa* and *Xcc*

attempted to extend the current strategy to trifluoromethyl/arylation of the alkenes for preparing fluoroalkyl motif-containing aminated phenylpropylamides. Recently, oxime esters have emerged as powerful bifunctional reagents for vicinal difunctionalization of alkenes via a triplet energy transfer process.<sup>39–42,53,54</sup> Our group has also reported the *para*-selective amination of arenes using benzyl alcohol-derived oxime esters.<sup>31</sup> Inspired by these seminal works, trifluoroacetyl oxime **4a** was selected as the bifunctional reagent to react with amide **1a**. To our delight, the reaction proceeded successfully to afford the trifluoromethyl-containing target in 48% yield (**5m**). The current trifluoromethyl/arylation of alkene exhibits better tolerance for the substituents on the amide's aryl ring. For instance, amides bearing a chlorine/bromine atom or a methyl group adjacent to the spiro carbon proceeded the reaction smoothly, affording the corresponding aminated phenylpropylamides in 52% (**5n**), 52% (**5o**), and 39% (**5p**) yields, respectively. Particularly, the 2,6-dichloro aniline-derived amide, which poses significant steric hindrance for the spiro cyclization step, was also an effective substrate, affording desired product **5q** in 51% yield. Both  $\alpha$ - and  $\gamma$ -substituted amides are competent substrates, successfully providing the corresponding targets (**5r–5t**). The relatively low yield of **5t** may be attributed to the steric effect of methyl on the radical addition or radical cyclization steps. Besides, oxime esters derived from other fluorine atom-containing acids, such as difluoroacetic acid and chlorodifluoroacetic acid, proved to be effective substrates, providing access to preparing difluoromethyl- or chlorodifluoromethyl-containing phenylpropylamides (**5z–5ad**).


**Applications.** The products contain multiple functional groups for diverse further transformations. For instance, the imine group can be converted into an amino group in the presence of trifluoroacetic acid, producing valuable sulfonyl, trifluoromethyl, or difluoromethyl group-containing 4-amino phenylpropylamides **6–8** in 83, 86, and 74% yields,

respectively. To further enhance the practicality of our method, a one-pot, two-step procedure that integrates the aryl migration and hydrolysis steps was conducted using **1a** as the starting material (Scheme 1b). The desired product **6** was obtained in 56% yield, which is consistent with the yield of the two-step operation. Additionally, the imine group can be converted to a secondary amine moiety via the reduction of the C–N double bond by NaBH<sub>3</sub>CN, producing **9** in 85% yield. The cyano group in compound **5a** can react with hydroxylamine hydrochloride in the presence of equal equivalents of potassium *tert*-butoxide as a base to produce (*Z*)-*N'*-hydroxybenzimidamide **10** in 86% yield. Simultaneously, the imine group in **5a** was converted to the amino group. The structure of compound **10** was further confirmed by X-ray diffraction analysis of the corresponding single crystal (CCDC: 2481047). The cyano group can also react with nucleophiles such as methyl lithium, producing ketone product **11** in 49% yield. Treatment of **5ad** by *t*-BuOK (1.1 equiv) in MeCN at room temperature for 5 h leads to the elimination of hydrogen chloride, delivering valuable gem-difluoroalkene **12** in 76% yield (Scheme 1c). Considering the wide application of the 3-(4-aminophenyl)propionamide moiety in bioactive molecules,<sup>4–7</sup> we applied our reaction in the divergent synthesis of several analogues of phosphodiesterase 4D inhibitor. Reacting the above-obtained anilines **6–8** with preprepared chlorinated pyrimidine **13** in the presence of 1.5 equiv of hydrogen chloride resulted in the formation of sulfonyl, trifluoromethyl, or difluoromethyl-containing potential bioactive molecules in 85% (**14**), 76% (**15**), and 74% (**16**) yields, respectively (Scheme 1d).

As part of our continuous interest in designing and preparing structurally innovative small molecules with biological activity in agricultural applications,<sup>55–57</sup> the antibacterial activity against *Xanthomonas campestris* pv. *campestris* (*Xcc*) and *Pseudomonas syringae* pv. *actinidiae* (*Psa*) of the obtained 3-(4-aminophenyl)propionamides was evaluated, with commercial

**a. Reactions in the presence of radical scavenger****b. Direct excitation experiments****c. UV-Visible absorption spectrum & Stern-Volmer quenching experiments****d. Light-on-off experiments****Figure 2.** Mechanistic studies.

Scheme 2. Possible Reaction Pathway



bactericides bismethiazol (BT) and thiadiazole copper (TC) used as positive controls. As shown in Scheme 1e, most of the tested products exhibited excellent inhibitory activity against *Psa* at 100  $\mu$ g/mL, surpassing commercial bactericides BT and TC (Scheme 1e, left). The antibacterial activity against *Xcc* at 100  $\mu$ g/mL also gave impressive results (Scheme 1e, right). The high inhibitory rates demonstrate that our products have the potential to be developed as new bactericides for crop protection.

**Mechanistic Studies.** Multiple experimental studies were conducted to gain insight into the reaction pathway (Figure 2). First of all, TEMPO was added to the model reactions as a radical scavenger under otherwise identical conditions (Figure 2a). As a result, both the arylsulfonylation and trifluoromethylarylation reactions were suppressed entirely, suggesting the radical character of the current reactions. Reactions that proceed through the triplet state of substrates should be feasible through direct light excitation, which distinguishes them from reactions through a single-electron transfer pathway. Thus, the model reactions were conducted under short-wavelength light ( $\lambda = 365\text{--}375$  nm) without the presence of PC-8 as a photosensitizer (Figure 2b). As expected, the desired 3a and 5m were successfully obtained, albeit with remarkably dropped yields, confirming the energy transfer pathway. The UV-visible absorption data revealed that only PC-8 has absorption at 390 nm (Figure 2c, left). The matched triplet state energy of thioxanthone-type catalyst and sulfonyl imines<sup>43</sup> and oxime esters favors the energy transfer process between the PC-8 and the bifunctional reagents. To confirm this conclusion, sulfonyl imine 2a was selected as the example to conduct the Stern–Volmer quenching experiments with PC-8. As depicted in Figure 2c, the emission of PC-8 can be effectively quenched by the sulfonyl imine 2a. At last, light on–off experiments revealed that the sulfonyl imine and oxime ester involved reactions behave differently in the dark. Specifically, the slightly increased yield in the oxime ester reaction supports the involvement of a radical chain pathway

(Figure 2d). In contrast, no reaction occurs in the sulfonyl imine reaction, even in a prolonged time in the dark (Figure 2d). Nonetheless, this is not sufficient to rule out a chain propagation mechanism, since the radical chain is likely to decay too fast to be detected on a laboratory time scale.<sup>58,59</sup>

Based on the above experimental studies and reported literature,<sup>31–33</sup> a possible reaction pathway was proposed and described in Scheme 2 using sulfonyl imine as a representative example. The reaction begins with light excitation of the photosensitizer and subsequent energy transfer with sulfonyl imine 2, affording excited state 2\*, which undergoes N–S bond homolysis to generate sulfonyl radical I and iminyl radical II. Radical addition of sulfonyl radical I to the C–C double bond of amide 1 leads to the formation of aryl ring tethered carbon radical III. Intramolecular radical *ispo*-addition to the aryl ring leads to the ultraremote activation of the arene's *para*-position, generating the spiro cyclic intermediate IV. Subsequent site-selective radical recombination enables the formation of a new C–N bond at the *para*-position of the aryl ring, delivering a spiro cyclohexadiene V. The specific site selectivity of such radical recombination step has been rationalized in our previously reported arene remote functionalizations.<sup>31,33</sup> At last, intermediate V undergoes an energy barrierless rearomatization step via cleavage of the old C–N bond to produce the final 4-aminoated phenylpropylamine 3.

## CONCLUSIONS

In summary, we have developed a photocatalytic aryl migration-mediated difunctionalization of alkenes for rapid access to valuable 4-aminoated benzene propanamide skeletons. The reaction features the *in situ* formation of the 4-aminoated aryl rings via radical-based remote arene C–H amination, which significantly enhances the flexibility of the classical aryl migration strategy and improves the migration efficiency of the 4-aminoated aryl group. The reactions are suitable for several different bifunctional reagents, enabling the divergent synthesis

of sulfonyl-, trifluoromethyl-, difluoromethyl-, or chlorodifluoromethyl-containing benzenepropylamides in moderate to good yields. The practical utility of the current strategy is demonstrated by late-stage modification of pharmaceutical-relevant molecules, further transformation of the products, synthesis of potentially bioactive molecules, and antibacterial activity investigations. Experimental mechanistic studies support our proposed reaction pathway. We believe that the current strategy will bring new ideas for designing novel aryl migration-based synthetic methods and expedite the synthesis of complex structures.

## METHODS

**General Procedure for the Photocatalytic Aryl Amination/Migration Transformation.** To a 10 mL Schlenk tube equipped with a stir bar was added unsaturated amide **1a** (20.3 mg, 0.10 mmol), sulfonyl ketimines **2a** (52.0 mg, 0.15 mmol), and **PC-8** (0.2 mL in ethyl acetate, 2.5 mM). The Schlenk tube was sealed and placed under argon before 1.8 mL of dry ethyl acetate was added. The reaction was stirred and irradiated with two LED Kessil lamps ( $\lambda_{\text{max}} = 390$  nm, intensity = 100%, 3 cm away from the Schlenk tube, with a cooling fan to keep the reaction temperature at 30–40 °C) for 10 h. The reaction mixture was then concentrated under vacuum to afford the crude material, which was purified by column chromatography (silica gel, PE/EtOAc) to give product **3a**.

## ASSOCIATED CONTENT

### Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acscatal.5c06638>.

Experiment procedures and characterization of all new compounds and X-ray structure data of compounds **5a** & **10** (PDF)

**5a** (CIF)

**10** (CIF)

## AUTHOR INFORMATION

### Corresponding Authors

**Shi-Chao Ren** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China;  [orcid.org/0000-0003-4248-6021](https://orcid.org/0000-0003-4248-6021); Email: [scren@gzu.edu.cn](mailto:scren@gzu.edu.cn)

**Yonggui Robin Chi** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore;  [orcid.org/0000-0003-0573-257X](https://orcid.org/0000-0003-0573-257X); Email: [robinchi@ntu.edu.sg](mailto:robinchi@ntu.edu.sg)

### Authors

**Dongmei Chen** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China

**Ting Tu** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China

**Tianhui Liao** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China

**Donghan Liu** – State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China

Complete contact information is available at: <https://pubs.acs.org/doi/10.1021/acscatal.5c06638>

## Author Contributions

D.C. performed main methodology development, scope evaluation, and synthetic application; T.T., T.L., and D.L. contributed to earlier studies; S.-C.R. and Y.R.C. conceptualized and directed the project and drafted the manuscript with assistance from all coauthors. All authors contributed to part of the experiments and/or discussions.

## Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

We acknowledge financial support from the National Natural Science Foundation of China (22371058, U23A20201), National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas), the starting grant of Guizhou University [(2023)29], the Science and Technology Department of Guizhou Province (Qiankehejichu-ZK[2024]Key009), the Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University, the Central Government Guides Local Science and Technology Development Fund Projects Qiankehezhongyindi (2024) 007, (2023)001, Singapore National Research Foundation under its NRF Competitive Research Program (NRF-CRP22-2019-0002); Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG84/22, RG70/21), MOE AcRF Tier 2 (MOE-T2EP10222-0006); and a Chair Professorship Grant, and Nanyang Technological University.

## REFERENCES

- (1) Tavares, M. T.; de Almeida, L. C.; Kronenberger, T.; Ferreira, G. M.; de Divitiis, T. F.; Toledo, M. F. Z. J.; Hassimotto, N. M. A.; Machado-Neto, J. A.; Costa-Lotufo, L. V.; Parise-Filho, R. Structure-activity relationship and mechanistic studies for a series of cinnamyl hydroxamate histone deacetylase inhibitors. *Bioorg. Med. Chem.* **2021**, 35, No. 116085.
- (2) Denny, W. A.; Atwell, G. J.; Cain, B. F. Potential antitumor agents. 26. Anionic congeners of the 9-anilinoacridines. *J. Med. Chem.* **1978**, 21, 5–10.
- (3) Nitsche, C.; Steuer, C.; Klein, C. D. Arylcyanocrylamides as inhibitors of the Dengue and West Nile virus proteases. *Bioorg. Med. Chem.* **2011**, 19, 7318–7337.
- (4) Gurney, M. E.; Nugent, R. A.; Mo, X.; Sindac, J. A.; Hagen, T. J.; Fox, D.; O'Donnell, J. M.; Zhang, C.; Xu, Y.; Zhang, H.-T.; Groppi, V. E.; Bailie, M.; White, R. E.; Romero, D. L.; Vellekoop, A. S.; Walker, J. R.; Surman, M. D.; Zhu, L.; Campbell, R. F. Design and Synthesis of Selective Phosphodiesterase 4D (PDE4D) Allosteric Inhibitors for the Treatment of Fragile X Syndrome and Other Brain Disorders. *J. Med. Chem.* **2019**, 62, 4884–4901.
- (5) Illig, C. R.; Manthey, C. L.; Meegalla, S. K.; Wall, M. J.; Chen, J.; Wilson, K. J.; DesJarlais, R. L.; Ballantine, S. K.; Schubert, C.; Crysler, C. S.; Chen, Y.; Molloy, C. J.; Chaikin, M. A.; Donatelli, R. R.; Yurkow, E.; Zhou, Z.; Player, M. R.; Tomczuk, B. E. Enhancement of kinase selectivity in a potent class of arylamide FMS inhibitors. *Bioorg. Med. Chem. Lett.* **2013**, 23, 6363–6369.
- (6) Pesyan, A.; Balandrin, M. Novel compounds advantageous in the treatment of central nervous system diseases and disorders. U.S. Patent US011046128A1, 2011.
- (7) Carceller, E.; Salas, J.; Merlos, M.; Giral, M.; Ferrando, R.; Escamilla, I.; Ramis, J.; García-Rafanell, J.; Forn, J. Novel Azo Derivatives as Prodrugs of 5-Aminosalicylic Acid and Amino Derivatives with Potent Platelet Activating Factor Antagonist Activity. *J. Med. Chem.* **2001**, 44, 3001–3013.
- (8) Wu, X.; Ma, Z.; Feng, T.; Zhu, C. Radical-mediated rearrangements: past, present, and future. *Chem. Soc. Rev.* **2021**, 50, 11577–11613.

(9) Chen, F.; Cao, Z.; Zhu, C. Asymmetric Functionalization Harnessing Radical-Mediated Functional-Group Migration. *Angew. Chem., Int. Ed.* **2025**, *64*, No. e202424667.

(10) Chen, F.; Cao, Z.; Zhu, C. Intramolecularly remote functional group migration reactions involving free radicals. *Chem. Commun.* **2024**, *60*, 14912–14923.

(11) Allen, A. R.; Noten, E. A.; Stephenson, C. R. J. Aryl Transfer Strategies Mediated by Photoinduced Electron Transfer. *Chem. Rev.* **2022**, *122*, 2695–2751.

(12) Chen, Z. M.; Zhang, X. M.; Tu, Y. Q. Radical aryl migration reactions and synthetic applications. *Chem. Soc. Rev.* **2015**, *44*, 5220–5245.

(13) Wu, X. X.; Zhu, C. Radical-Mediated Remote Functional Group Migration. *Acc. Chem. Res.* **2020**, *53*, 1620–1636.

(14) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. Chemo- and Regioselective Distal Heteroaryl ipso-Migration: A General Protocol for Heteroarylation of Unactivated Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 1388–1391.

(15) Yu, J.; Zhang, X.; Wu, X.; Liu, T.; Zhang, Z.-Q.; Wu, J.; Zhu, C. Metal-free radical difunctionalization of ethylene. *Chem.* **2023**, *9*, 472–482.

(16) Cao, Z.; Sun, Y.; Chen, Y.; Zhu, C. Photoinduced Asymmetric Alkene Aminohetarylation with Chiral Sulfoxime Reagents. *Angew. Chem., Int. Ed.* **2024**, *63*, No. e202408177.

(17) Wang, X.; Li, H.; Chen, Y.; Wang, Z.; Wu, X.; Zhu, C. Modular access to alkylfluorides via radical decarboxylative-desulfonylative gem-difunctionalization. *Nat. Commun.* **2025**, *16*, No. 4702.

(18) Bacqué, E.; El Qacemi, M.; Zard, S. Z. An Unusual Radical Smiles Rearrangement. *Org. Lett.* **2005**, *7*, 3817–3820.

(19) Liu, G.; Ma, D.; Zhang, J.; Yang, F.; Gao, Y.; Su, W. CO<sub>2</sub>-promoted photocatalytic aryl migration from nitrogen to carbon for switchable transformation of N-arylpropiolamides. *Nat. Commun.* **2024**, *15*, No. 15.

(20) Rey, V.; Pierini, A. B.; Peñénory, A. B. Competitive Reaction Pathways for o-Anilide Aryl Radicals: 1,5- or 1,6-Hydrogen Transfer versus Nucleophilic Coupling Reactions. A Novel Rearrangement to Afford an Amidyl Radical. *J. Org. Chem.* **2009**, *74*, 1223–1230.

(21) Shiozuka, A.; Wu, D.; Kawashima, K.; Mori, T.; Sekine, K.; Kuninobu, Y. Carbamoylarylation of Alkenes with N-Aryl Oxamic Acids Involving 1,4-Aryl Migration Via C(aryl)-N Bond Cleavage. *ACS Catal.* **2024**, *14*, 5972–5977.

(22) Babcock, D. J.; Wolfram, A. J.; Barney, J. L.; Servagno, S. M.; Sharma, A.; Nacsá, E. D. A free-radical design featuring an intramolecular migration for a synthetically versatile alkyl-(hetero)-arylation of simple olefins. *Chem. Sci.* **2024**, *15*, 4031–4040.

(23) Ji, M. S.; Wang, X. X.; Liu, J. G.; Wu, X. X.; Zhu, C. Catalyst-free, radical-mediated intermolecular 1,2-arylheteroarylation of alkenes by cleaving inert C-C bond. *Sci. China Chem.* **2021**, *64*, 1703–1708.

(24) Liu, J. G.; Wu, S.; Yu, J. J.; Lu, C. X.; Wu, Z.; Wu, X. X.; Xue, X. S.; Zhu, C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. *Angew. Chem., Int. Ed.* **2020**, *59*, 8195–8202.

(25) Moon, Y.; Lee, W.; Hong, S. Visible-Light-Enabled Selective Aminopyridylation of Alkenes with Aminopyridinium Ylides. *J. Am. Chem. Soc.* **2020**, *142*, 12420–12429.

(26) Noten, E. A.; Ng, C. H.; Wolesensky, R. M.; Stephenson, C. R. J. A general alkene aminoarylation enabled by N-centred radical reactivity of sulfinamides. *Nat. Chem.* **2024**, *16*, 599–606.

(27) Wang, D. H.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Radical Aryl Migration from Boron to Carbon. *J. Am. Chem. Soc.* **2021**, *143*, 9320–9326.

(28) Yu, J. J.; Wu, Z.; Zhu, C. Efficient Docking-Migration Strategy for Selective Radical Difluoromethylation of Alkenes. *Angew. Chem., Int. Ed.* **2018**, *57*, 17156–17160.

(29) Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. *Science* **2018**, *361*, 1369–1373.

(30) Dutta, U.; Maiti, S.; Bhattacharya, T.; Maiti, D. Arene diversification through distal C(sp<sup>2</sup>)-H functionalization. *Science* **2021**, *372*, No. eabd5992.

(31) Liu, D.; Tu, T.; Zhang, T.; Nie, G.; Liao, T.; Ren, S. C.; Zhang, X.; Chi, Y. R. Photocatalytic Direct Para-Selective C–H Amination of Benzyl Alcohols: Selectivity Independent of Side Substituents. *Angew. Chem., Int. Ed.* **2024**, *63*, No. e202407293.

(32) Li, Q.-Z.; Zou, W.-L.; Yu, Z.-Y.; Kou, X.-X.; Liu, Y.-Q.; Zhang, X.; He, Y.; Li, J.-L. Remote site-selective arene C–H functionalization enabled by N-heterocyclic carbene organocatalysis. *Nat. Catal.* **2024**, *7*, 900–911.

(33) Zhang, T.; Wang, L.; Peng, X.; Liao, T.; Chen, D.; Tu, T.; Liu, D.; Cheng, Z.; Huang, S.; Ren, S.-C.; Zhang, X.; Chi, Y. R. NHC-mediated photocatalytic para-selective C–H acylation of aryl alcohols: regioselectivity control via remote radical spiro cyclization. *Sci. China Chem.* **2025**, *68*, 3611–3621.

(34) Liao, T.; Zhao, X.; Yang, F.; Xu, G.; Chen, D.; Tu, T.; Huang, S.; Ren, S.-C.; Chi, Y. R. Carbene-Catalyzed Nitrogen to Carbon Aryl Migration via a Radical Neutral Crossover Process. *ACS Catal.* **2025**, *15*, 16356–16368.

(35) Lee, D. S.; Soni, V. K.; Cho, E. J. N–O Bond Activation by Energy Transfer Photocatalysis. *Acc. Chem. Res.* **2022**, *55*, 2526–2541.

(36) Leifert, D.; Studer, A. The Persistent Radical Effect in Organic Synthesis. *Angew. Chem., Int. Ed.* **2020**, *59*, 74–108.

(37) Majhi, J.; Dhungana, R. K.; Rentería-Gómez, A.; Sharique, M.; Li, L.; Dong, W.; Gutierrez, O.; Molander, G. A. Metal-Free Photochemical Imino-Alkylation of Alkenes with Bifunctional Oxime Esters. *J. Am. Chem. Soc.* **2022**, *144*, 15871–15878.

(38) Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff, F.; Glorius, F. Visible-Light-Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions. *Angew. Chem., Int. Ed.* **2019**, *58*, 10514–10520.

(39) Qi, X.-K.; Zheng, M.-J.; Yang, C.; Zhao, Y.; Guo, L.; Xia, W. Metal-Free Amino(hetero)arylation and Aminosulfonylation of Alkenes Enabled by Photoinduced Energy Transfer. *J. Am. Chem. Soc.* **2023**, *145*, 16630–16641.

(40) Tan, G.; Das, M.; Keum, H.; Bellotti, P.; Daniliuc, C.; Glorius, F. Photochemical single-step synthesis of  $\beta$ -amino acid derivatives from alkenes and (hetero)arenes. *Nat. Chem.* **2022**, *14*, 1174–1184.

(41) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. *Chem. Rev.* **2021**, *121*, 506–561.

(42) Lai, S. Q.; Wei, B. Y.; Wang, J. W.; Yu, W.; Han, B. Photocatalytic Anti-Markovnikov Radical Hydro- and Aminoxygénéation of Unactivated Alkenes Tuned by Ketoxime Carbonates. *Angew. Chem., Int. Ed.* **2021**, *60*, 21997–22003.

(43) Erchinger, J. E.; Hoogesteger, R.; Laskar, R.; Dutta, S.; Hümpel, C.; Rana, D.; Daniliuc, C. G.; Glorius, F. EnT-Mediated N–S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. *J. Am. Chem. Soc.* **2023**, *145*, 2364–2374.

(44) Tian, S.; Liu, R.; Zhang, K.; Xia, Y.; Liu, Y.; Li, P.; Duan, X.-H.; Guo, L.-N. Substrate-Regulated Divergent Addition of N-Sulfonyl Ketimines to Bicyclo[1.1.0]butanes Enabled by Photoinduced Energy Transfer. *Org. Lett.* **2025**, *27*, 3818–3824.

(45) Tilby, M. J.; Dewez, D. F.; Pantaine, L. R. E.; Hall, A.; Martínez-Lamenca, C.; Willis, M. C. Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates. *ACS Catal.* **2022**, *12*, 6060–6067.

(46) Yue, F.; Li, M.; Li, J.; Song, H.; Liu, Y.; Wang, Q. Energy-Transfer-Enabled Truce–Smiles Rearrangement Using Sulfonamides as Sulfonyl Radical Precursors. *Org. Lett.* **2025**, *27*, 5394–5398.

(47) Zheng, Y.; Liao, Z.; Xie, Z.; Chen, H.; Chen, K.; Xiang, H.; Yang, H. Photochemical Alkene Trifluoromethylimation Enabled by Trifluoromethylsulfonylamine as a Bifunctional Reagent. *Org. Lett.* **2023**, *25*, 2129–2133.

(48) Cai, Y.; Roy, T. K.; Zähringer, T. J. B.; Lansbergen, B.; Kerzig, C.; Ritter, T. Arylthianthrenium Salts for Triplet Energy Transfer Catalysis. *J. Am. Chem. Soc.* **2024**, *146*, 30474–30482.

(49) Pozharskii, A. F.; A T, S.; Katritzky, A. R. An Introduction to Heterocyclic Chemistry, Biochemistry and Applications. *Heterocycl. Life Soc.* 2011, 1–400.

(50) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J. Med. Chem.* 2014, 57, 10257–10274.

(51) Kirk, K. L. Fluorination in Medicinal Chemistry: Methods, Strategies, and Recent Developments. *Org. Process Res. Dev.* 2008, 12, 305–321.

(52) Müller, K.; C, F.; François, Diederich. Fluorine in Pharmaceuticals: Looking Beyond Intuition. *Science* 2007, 317, 1881–1886.

(53) Patra, T.; Bellotti, P.; Strieth-Kalthoff, F.; Glorius, F. Photosensitized Intermolecular Carboimination of Alkenes through the Persistent Radical Effect. *Angew. Chem., Int. Ed.* 2020, 59, 3172–3177.

(54) Patra, T.; Das, M.; Daniliuc, C. G.; Glorius, F. Metal-free photosensitized oxyimination of unactivated alkenes with bifunctional oxime carbonates. *Nat. Catal.* 2021, 4, 54–61.

(55) Ji, H.; Zou, J.; Mou, C.; Liu, Y.; Ren, S.-C.; Chi, Y. R. NHC-catalyzed [12 + 2] reaction of polycyclic arylaldehydes for access to indole derivatives. *Chem. Commun.* 2023, 59, 6351–6354.

(56) Nie, G.; Tu, T.; Liao, T.; Liu, D.; Ye, W.; Ren, S.-C. N-heterocyclic carbene and photocatalyst-catalyzed rapid access to indole ketones via radical C(sp<sup>3</sup>)–H acylation. *Green Chem.* 2024, 26, 5397–5408.

(57) Tu, T.; Nie, G.; Zhang, T.; Hu, C.; Ren, S.-C.; Xia, H.; Chi, Y. R. Carbene and photocatalyst-catalyzed 3-acylation of indoles for facile access to indole-3-yl aryl ketones. *Chem. Commun.* 2024, 60, 11088–11091.

(58) Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Mechanistic Studies in Photocatalysis. *Angew. Chem., Int. Ed.* 2019, 58, 3730–3747.

(59) Cismesia, M. A.; Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. *Chem. Sci.* 2015, 6, 5426–5434.



CAS BIOFINDER DISCOVERY PLATFORM™

## BRIDGE BIOLOGY AND CHEMISTRY FOR FASTER ANSWERS

Analyze target relationships,  
compound effects, and disease  
pathways

Explore the platform

